Lisa Deloch, Michael Rückert, Thomas Weissmann, Sebastian Lettmaier, Eva Titova, Teresa Wolff, Felix Weinrich, Rainer Fietkau, Udo S Gaipl
{"title":"巨噬细胞的各种功能和表型也反映在它们对辐照的反应中:当前概述。","authors":"Lisa Deloch, Michael Rückert, Thomas Weissmann, Sebastian Lettmaier, Eva Titova, Teresa Wolff, Felix Weinrich, Rainer Fietkau, Udo S Gaipl","doi":"10.1016/bs.ircmb.2023.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are a vital part of the innate immune system that are involved in healthy biological processes but also in disease modulation and response to therapy. Ionizing radiation is commonly used in the treatment of cancer and, in a lower dose range, as additive therapy for inflammatory diseases. In general, lower doses of ionizing radiation are known to induce rather anti-inflammatory responses, while higher doses are utilized in cancer treatment where they result, next to tumor control, in rather inflammatory responses. Most experiments that have been carried out in ex vivo on macrophages find this to be true, however in vivo, tumor-associated macrophages, for example, show a contradictory response to the respective dose-range. While some knowledge in radiation-induced modulations of macrophages has been collected, many of the underlying mechanisms remain unclear. Due to their pivotal role in the human body, however, they are a great target in therapy and could potentially aid in better treatment outcome. We therefore summarized the current knowledge of macrophage mediated radiation responses.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The various functions and phenotypes of macrophages are also reflected in their responses to irradiation: A current overview.\",\"authors\":\"Lisa Deloch, Michael Rückert, Thomas Weissmann, Sebastian Lettmaier, Eva Titova, Teresa Wolff, Felix Weinrich, Rainer Fietkau, Udo S Gaipl\",\"doi\":\"10.1016/bs.ircmb.2023.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are a vital part of the innate immune system that are involved in healthy biological processes but also in disease modulation and response to therapy. Ionizing radiation is commonly used in the treatment of cancer and, in a lower dose range, as additive therapy for inflammatory diseases. In general, lower doses of ionizing radiation are known to induce rather anti-inflammatory responses, while higher doses are utilized in cancer treatment where they result, next to tumor control, in rather inflammatory responses. Most experiments that have been carried out in ex vivo on macrophages find this to be true, however in vivo, tumor-associated macrophages, for example, show a contradictory response to the respective dose-range. While some knowledge in radiation-induced modulations of macrophages has been collected, many of the underlying mechanisms remain unclear. Due to their pivotal role in the human body, however, they are a great target in therapy and could potentially aid in better treatment outcome. We therefore summarized the current knowledge of macrophage mediated radiation responses.</p>\",\"PeriodicalId\":14422,\"journal\":{\"name\":\"International review of cell and molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International review of cell and molecular biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ircmb.2023.01.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.01.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The various functions and phenotypes of macrophages are also reflected in their responses to irradiation: A current overview.
Macrophages are a vital part of the innate immune system that are involved in healthy biological processes but also in disease modulation and response to therapy. Ionizing radiation is commonly used in the treatment of cancer and, in a lower dose range, as additive therapy for inflammatory diseases. In general, lower doses of ionizing radiation are known to induce rather anti-inflammatory responses, while higher doses are utilized in cancer treatment where they result, next to tumor control, in rather inflammatory responses. Most experiments that have been carried out in ex vivo on macrophages find this to be true, however in vivo, tumor-associated macrophages, for example, show a contradictory response to the respective dose-range. While some knowledge in radiation-induced modulations of macrophages has been collected, many of the underlying mechanisms remain unclear. Due to their pivotal role in the human body, however, they are a great target in therapy and could potentially aid in better treatment outcome. We therefore summarized the current knowledge of macrophage mediated radiation responses.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.