{"title":"蛋白质在液-表面界面的自组装。表面介导的聚集催化","authors":"Yuri L. Lyubchenko*, ","doi":"10.1021/acs.jpcb.2c09029","DOIUrl":null,"url":null,"abstract":"<p >Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane–liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer’s and other devastating neurodegenerative disorders.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"127 9","pages":"1880–1889"},"PeriodicalIF":2.8000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protein Self-Assembly at the Liquid–Surface Interface. Surface-Mediated Aggregation Catalysis\",\"authors\":\"Yuri L. Lyubchenko*, \",\"doi\":\"10.1021/acs.jpcb.2c09029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane–liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer’s and other devastating neurodegenerative disorders.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"127 9\",\"pages\":\"1880–1889\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.2c09029\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.2c09029","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Protein Self-Assembly at the Liquid–Surface Interface. Surface-Mediated Aggregation Catalysis
Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane–liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer’s and other devastating neurodegenerative disorders.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.