应用反向传播神经网络预测抗生素的膜分离。

IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering Pub Date : 2023-01-01 Epub Date: 2023-04-18 DOI:10.1080/10934529.2023.2200719
Mixuan Ye, Haidong Zhou, Xinxuan Xu, Lidan Pang, Yunjia Xu, Jingyuan Zhang, Danyan Li
{"title":"应用反向传播神经网络预测抗生素的膜分离。","authors":"Mixuan Ye,&nbsp;Haidong Zhou,&nbsp;Xinxuan Xu,&nbsp;Lidan Pang,&nbsp;Yunjia Xu,&nbsp;Jingyuan Zhang,&nbsp;Danyan Li","doi":"10.1080/10934529.2023.2200719","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the <i>R</i><sup>2</sup> of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":"58 6","pages":"538-549"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane separation of antibiotics predicted with the back propagation neural network.\",\"authors\":\"Mixuan Ye,&nbsp;Haidong Zhou,&nbsp;Xinxuan Xu,&nbsp;Lidan Pang,&nbsp;Yunjia Xu,&nbsp;Jingyuan Zhang,&nbsp;Danyan Li\",\"doi\":\"10.1080/10934529.2023.2200719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the <i>R</i><sup>2</sup> of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\"58 6\",\"pages\":\"538-549\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2200719\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2200719","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

抗生素和抗生素抗性基因(ARGs)在水生环境中经常被检测到,并被视为新出现的污染物。基于反向传播神经网络(BPNN),通过训练输入和输出,建立了膜分离技术对四种目标抗生素去除效果的预测模型。抗生素膜分离试验表明,微滤对阿奇霉素和环丙沙星的去除效果较好,基本在80%以上。超滤和纳滤对磺胺甲恶唑(SMZ)和四环素(TC)的去除效果较好。渗透物中SMZ和TC的浓度之间存在很强的相关性,训练和验证过程的R2超过0.9。输入层变量与预测目标之间的相关性越强,BPNN模型的预测性能就越好。这些结果表明,所建立的BPNN预测模型能够更好地模拟膜分离技术对目标抗生素的去除。该模型可用于预测和探索外部条件对膜分离技术的影响,为BPNN模型在环境保护中的应用提供一定的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Membrane separation of antibiotics predicted with the back propagation neural network.

Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the R2 of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
Kinetics and simulation of biodiesel production using a geopolymer heterogenous catalyst. Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs). Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies. Biogenic and risk elements in wild boar testes and relation to spermatozoa motility. Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1