Ana Parga, Daniel Manoil, Malin Brundin, Ana Otero, Georgios N Belibasakis
{"title":"革兰氏阴性群体感应信号增强革兰氏阳性病原体粪肠球菌的生物膜形成和毒力特性。","authors":"Ana Parga, Daniel Manoil, Malin Brundin, Ana Otero, Georgios N Belibasakis","doi":"10.1080/20002297.2023.2208901","DOIUrl":null,"url":null,"abstract":"<p><p>Acyl-homoserine lactones (AHLs) are typical quorum-sensing molecules of gram-negative bacteria. Recent evidence suggests that AHLs may also affect gram-positives, although knowledge of these interactions remains scarce. Here, we assessed the effect of AHLs on biofilm formation and transcriptional regulations in the gram-positive <i>Enterococcus faecalis</i>. Five <i>E. faecalis</i> strains were investigated herein. Crystal violet was employed to quantify the biomass formed, and confocal microscopy in combination with SYTO9/PI allowed the visualisation of biofilms' structure. The differential expression of 10 genes involved in quorum-sensing, biofilm formation and stress responses was evaluated using reverse-transcription-qPCR. The AHL exposure significantly increased biofilm production in strain ATCC 29212 and two isolates from infected dental roots, UmID4 and UmID5. In strains ATCC 29212 and UmID7, AHLs up-regulated the quorum-sensing genes (<i>fsrC</i>, <i>cylA</i>), the adhesins <i>ace</i>, <i>efaA</i> and <i>asa1</i>, together with the glycosyltransferase <i>epaQ</i>. In strain UmID7, AHL exposure additionally up-regulated two membrane-stress response genes (σ<sup>V</sup>, <i>groEL</i>) associated with increased stress-tolerance and virulence. Altogether, our results demonstrate that AHLs promote biofilm formation and up-regulate a transcriptional network involved in virulence and stress tolerance in several <i>E. faecalis</i> strains. These data provide yet-unreported insights into <i>E. faecalis</i> biofilm responses to AHLs, a family of molecules long-considered the monopole of gram-negative signalling.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"15 1","pages":"2208901"},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177678/pdf/","citationCount":"2","resultStr":"{\"title\":\"Gram-negative quorum sensing signalling enhances biofilm formation and virulence traits in gram-positive pathogen <i>Enterococcus faecalis</i>.\",\"authors\":\"Ana Parga, Daniel Manoil, Malin Brundin, Ana Otero, Georgios N Belibasakis\",\"doi\":\"10.1080/20002297.2023.2208901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acyl-homoserine lactones (AHLs) are typical quorum-sensing molecules of gram-negative bacteria. Recent evidence suggests that AHLs may also affect gram-positives, although knowledge of these interactions remains scarce. Here, we assessed the effect of AHLs on biofilm formation and transcriptional regulations in the gram-positive <i>Enterococcus faecalis</i>. Five <i>E. faecalis</i> strains were investigated herein. Crystal violet was employed to quantify the biomass formed, and confocal microscopy in combination with SYTO9/PI allowed the visualisation of biofilms' structure. The differential expression of 10 genes involved in quorum-sensing, biofilm formation and stress responses was evaluated using reverse-transcription-qPCR. The AHL exposure significantly increased biofilm production in strain ATCC 29212 and two isolates from infected dental roots, UmID4 and UmID5. In strains ATCC 29212 and UmID7, AHLs up-regulated the quorum-sensing genes (<i>fsrC</i>, <i>cylA</i>), the adhesins <i>ace</i>, <i>efaA</i> and <i>asa1</i>, together with the glycosyltransferase <i>epaQ</i>. In strain UmID7, AHL exposure additionally up-regulated two membrane-stress response genes (σ<sup>V</sup>, <i>groEL</i>) associated with increased stress-tolerance and virulence. Altogether, our results demonstrate that AHLs promote biofilm formation and up-regulate a transcriptional network involved in virulence and stress tolerance in several <i>E. faecalis</i> strains. These data provide yet-unreported insights into <i>E. faecalis</i> biofilm responses to AHLs, a family of molecules long-considered the monopole of gram-negative signalling.</p>\",\"PeriodicalId\":16598,\"journal\":{\"name\":\"Journal of Oral Microbiology\",\"volume\":\"15 1\",\"pages\":\"2208901\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177678/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/20002297.2023.2208901\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2023.2208901","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Gram-negative quorum sensing signalling enhances biofilm formation and virulence traits in gram-positive pathogen Enterococcus faecalis.
Acyl-homoserine lactones (AHLs) are typical quorum-sensing molecules of gram-negative bacteria. Recent evidence suggests that AHLs may also affect gram-positives, although knowledge of these interactions remains scarce. Here, we assessed the effect of AHLs on biofilm formation and transcriptional regulations in the gram-positive Enterococcus faecalis. Five E. faecalis strains were investigated herein. Crystal violet was employed to quantify the biomass formed, and confocal microscopy in combination with SYTO9/PI allowed the visualisation of biofilms' structure. The differential expression of 10 genes involved in quorum-sensing, biofilm formation and stress responses was evaluated using reverse-transcription-qPCR. The AHL exposure significantly increased biofilm production in strain ATCC 29212 and two isolates from infected dental roots, UmID4 and UmID5. In strains ATCC 29212 and UmID7, AHLs up-regulated the quorum-sensing genes (fsrC, cylA), the adhesins ace, efaA and asa1, together with the glycosyltransferase epaQ. In strain UmID7, AHL exposure additionally up-regulated two membrane-stress response genes (σV, groEL) associated with increased stress-tolerance and virulence. Altogether, our results demonstrate that AHLs promote biofilm formation and up-regulate a transcriptional network involved in virulence and stress tolerance in several E. faecalis strains. These data provide yet-unreported insights into E. faecalis biofilm responses to AHLs, a family of molecules long-considered the monopole of gram-negative signalling.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries