Brian L Appavu, M Hamed Temkit, Damla Hanalioglu, Brian T Burrows, P David Adelson
{"title":"与小儿创伤性脑损伤后脑组织缺氧有关的定量脑电图变化:回顾性探索分析","authors":"Brian L Appavu, M Hamed Temkit, Damla Hanalioglu, Brian T Burrows, P David Adelson","doi":"10.1097/WNP.0000000000001015","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Brain tissue hypoxia is associated with poor outcomes after pediatric traumatic brain injury. Although invasive brain oxygenation (PbtO 2 ) monitoring is available, noninvasive methods assessing correlates to brain tissue hypoxia are needed. We investigated EEG characteristics associated with brain tissue hypoxia.</p><p><strong>Methods: </strong>We performed a retrospective analysis of 19 pediatric traumatic brain injury patients undergoing multimodality neuromonitoring that included PbtO 2 and quantitative electroencephalography(QEEG). Quantitative electroencephalography characteristics were analyzed over electrodes adjacent to PbtO 2 monitoring and over the entire scalp, and included power in alpha and beta frequencies and the alpha-delta power ratio. To investigate relationships of PbtO 2 to quantitative electroencephalography features using time series data, we fit linear mixed effects models with a random intercept for each subject and one fixed effect, and an auto-regressive order of 1 to model between-subject variation and correlation for within-subject observations. Least squares (LS) means were used to investigate for fixed effects of quantitative electroencephalography features to changes in PbtO 2 across thresholds of 10, 15, 20, and 25 mm Hg.</p><p><strong>Results: </strong>Within the region of PbtO 2 monitoring, changes in PbtO 2 < 10 mm Hg were associated with reductions of alpha-delta power ratio (LS mean difference -0.01, 95% confidence interval (CI) [-0.02, -0.00], p = 0.0362). Changes in PbtO 2 < 25 mm Hg were associated with increases in alpha power (LS mean difference 0.04, 95% CI [0.01, 0.07], p = 0.0222).</p><p><strong>Conclusions: </strong>Alpha-delta power ratio changes are observed across a PbtO 2 threshold of 10 mm Hg within regions of PbtO 2 monitoring, which may reflect an EEG signature of brain tissue hypoxia after pediatric traumatic brain injury.</p>","PeriodicalId":15516,"journal":{"name":"Journal of Clinical Neurophysiology","volume":" ","pages":"214-220"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Electroencephalographic Changes Associated With Brain Tissue Hypoxia After Pediatric Traumatic Brain Injury: A Retrospective Exploratory Analysis.\",\"authors\":\"Brian L Appavu, M Hamed Temkit, Damla Hanalioglu, Brian T Burrows, P David Adelson\",\"doi\":\"10.1097/WNP.0000000000001015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Brain tissue hypoxia is associated with poor outcomes after pediatric traumatic brain injury. Although invasive brain oxygenation (PbtO 2 ) monitoring is available, noninvasive methods assessing correlates to brain tissue hypoxia are needed. We investigated EEG characteristics associated with brain tissue hypoxia.</p><p><strong>Methods: </strong>We performed a retrospective analysis of 19 pediatric traumatic brain injury patients undergoing multimodality neuromonitoring that included PbtO 2 and quantitative electroencephalography(QEEG). Quantitative electroencephalography characteristics were analyzed over electrodes adjacent to PbtO 2 monitoring and over the entire scalp, and included power in alpha and beta frequencies and the alpha-delta power ratio. To investigate relationships of PbtO 2 to quantitative electroencephalography features using time series data, we fit linear mixed effects models with a random intercept for each subject and one fixed effect, and an auto-regressive order of 1 to model between-subject variation and correlation for within-subject observations. Least squares (LS) means were used to investigate for fixed effects of quantitative electroencephalography features to changes in PbtO 2 across thresholds of 10, 15, 20, and 25 mm Hg.</p><p><strong>Results: </strong>Within the region of PbtO 2 monitoring, changes in PbtO 2 < 10 mm Hg were associated with reductions of alpha-delta power ratio (LS mean difference -0.01, 95% confidence interval (CI) [-0.02, -0.00], p = 0.0362). Changes in PbtO 2 < 25 mm Hg were associated with increases in alpha power (LS mean difference 0.04, 95% CI [0.01, 0.07], p = 0.0222).</p><p><strong>Conclusions: </strong>Alpha-delta power ratio changes are observed across a PbtO 2 threshold of 10 mm Hg within regions of PbtO 2 monitoring, which may reflect an EEG signature of brain tissue hypoxia after pediatric traumatic brain injury.</p>\",\"PeriodicalId\":15516,\"journal\":{\"name\":\"Journal of Clinical Neurophysiology\",\"volume\":\" \",\"pages\":\"214-220\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNP.0000000000001015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNP.0000000000001015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Quantitative Electroencephalographic Changes Associated With Brain Tissue Hypoxia After Pediatric Traumatic Brain Injury: A Retrospective Exploratory Analysis.
Purpose: Brain tissue hypoxia is associated with poor outcomes after pediatric traumatic brain injury. Although invasive brain oxygenation (PbtO 2 ) monitoring is available, noninvasive methods assessing correlates to brain tissue hypoxia are needed. We investigated EEG characteristics associated with brain tissue hypoxia.
Methods: We performed a retrospective analysis of 19 pediatric traumatic brain injury patients undergoing multimodality neuromonitoring that included PbtO 2 and quantitative electroencephalography(QEEG). Quantitative electroencephalography characteristics were analyzed over electrodes adjacent to PbtO 2 monitoring and over the entire scalp, and included power in alpha and beta frequencies and the alpha-delta power ratio. To investigate relationships of PbtO 2 to quantitative electroencephalography features using time series data, we fit linear mixed effects models with a random intercept for each subject and one fixed effect, and an auto-regressive order of 1 to model between-subject variation and correlation for within-subject observations. Least squares (LS) means were used to investigate for fixed effects of quantitative electroencephalography features to changes in PbtO 2 across thresholds of 10, 15, 20, and 25 mm Hg.
Results: Within the region of PbtO 2 monitoring, changes in PbtO 2 < 10 mm Hg were associated with reductions of alpha-delta power ratio (LS mean difference -0.01, 95% confidence interval (CI) [-0.02, -0.00], p = 0.0362). Changes in PbtO 2 < 25 mm Hg were associated with increases in alpha power (LS mean difference 0.04, 95% CI [0.01, 0.07], p = 0.0222).
Conclusions: Alpha-delta power ratio changes are observed across a PbtO 2 threshold of 10 mm Hg within regions of PbtO 2 monitoring, which may reflect an EEG signature of brain tissue hypoxia after pediatric traumatic brain injury.
期刊介绍:
The Journal of Clinical Neurophysiology features both topical reviews and original research in both central and peripheral neurophysiology, as related to patient evaluation and treatment.
Official Journal of the American Clinical Neurophysiology Society.