中药贺寿五标志性成分2,3,5,4′-四羟基二苯乙烯-2- o -β- d -葡萄糖苷的肝作用研究进展与展望

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2023-01-01 DOI:10.2174/1389200224666230223144826
Cheng-Yu Wang, Ying-Huan Hu, Zhen-Xiao Sun
{"title":"中药贺寿五标志性成分2,3,5,4′-四羟基二苯乙烯-2- o -β- d -葡萄糖苷的肝作用研究进展与展望","authors":"Cheng-Yu Wang,&nbsp;Ying-Huan Hu,&nbsp;Zhen-Xiao Sun","doi":"10.2174/1389200224666230223144826","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional Chinese medicine Heshouwu, named Polygoni Multiflori Radix in Pharmacopoeia of the People's Republic of China (PPRC, 2020), is derived from the root tuber of Polygonum multiflorum Thunb., Heshouwu or processed Heshouwu is well known for its function in reducing lipids and nourishing the liver. However, increasing cases of Heshouwu-induced hepatotoxicity were reported in recent years. Researchers have begun to study the paradoxical effects of Heshouwu on the liver. 2,3,5,4'-tetrahydroxystilbene-2-<i>O-β-D</i>-glucoside (TSG), an abundant functional component of Heshouwu, shows various biological activities, among which its effect on the liver is worthy of attention. This paper reviews the current studies of TSG on hepatoprotection and hepatotoxicity, and summarizes the doses, experimental models, effects, and mechanisms of action involved in TSG's hepatoprotection and hepatotoxicity, aiming to provide insight for future study of TSG and understanding the effects of Heshouwu on the liver. Emerging evidence suggests that TSG ameliorates both pathological liver injury and chemical-induced liver injury by modulating lipid metabolism, inhibiting the inflammatory response and oxidative stress in the liver. However, with the reports of clinical cases of Heshouwu induced liver injury, it has been found that long-term exposure to a high dose of TSG cause hepatocyte or hepatic tissue damage. Moreover, TSG may cause hepatotoxicity by affecting the transport and metabolism of other possible hepatoxic compounds in Heshouwu. Studies indicate that trans-TSG can be isomerized into <i>cis</i>-TSG under illumination, and <i>cis</i>-TSG had a less detrimental dose to liver function than trans- TSG in LPS-treated rats. In brief, TSG has protective effects on the liver, but liver injury usually occurs under highdose TSG or is idiosyncratic TSG-induced liver injury.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatic Effect of 2,3,5,4'-tetrahydroxystilbene-2-O-<i>β</i>-D-glucoside, the Signature Component of Traditional Chinese Medicine Heshouwu: Advances and Prospects.\",\"authors\":\"Cheng-Yu Wang,&nbsp;Ying-Huan Hu,&nbsp;Zhen-Xiao Sun\",\"doi\":\"10.2174/1389200224666230223144826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional Chinese medicine Heshouwu, named Polygoni Multiflori Radix in Pharmacopoeia of the People's Republic of China (PPRC, 2020), is derived from the root tuber of Polygonum multiflorum Thunb., Heshouwu or processed Heshouwu is well known for its function in reducing lipids and nourishing the liver. However, increasing cases of Heshouwu-induced hepatotoxicity were reported in recent years. Researchers have begun to study the paradoxical effects of Heshouwu on the liver. 2,3,5,4'-tetrahydroxystilbene-2-<i>O-β-D</i>-glucoside (TSG), an abundant functional component of Heshouwu, shows various biological activities, among which its effect on the liver is worthy of attention. This paper reviews the current studies of TSG on hepatoprotection and hepatotoxicity, and summarizes the doses, experimental models, effects, and mechanisms of action involved in TSG's hepatoprotection and hepatotoxicity, aiming to provide insight for future study of TSG and understanding the effects of Heshouwu on the liver. Emerging evidence suggests that TSG ameliorates both pathological liver injury and chemical-induced liver injury by modulating lipid metabolism, inhibiting the inflammatory response and oxidative stress in the liver. However, with the reports of clinical cases of Heshouwu induced liver injury, it has been found that long-term exposure to a high dose of TSG cause hepatocyte or hepatic tissue damage. Moreover, TSG may cause hepatotoxicity by affecting the transport and metabolism of other possible hepatoxic compounds in Heshouwu. Studies indicate that trans-TSG can be isomerized into <i>cis</i>-TSG under illumination, and <i>cis</i>-TSG had a less detrimental dose to liver function than trans- TSG in LPS-treated rats. In brief, TSG has protective effects on the liver, but liver injury usually occurs under highdose TSG or is idiosyncratic TSG-induced liver injury.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1389200224666230223144826\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230223144826","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中药何首乌,在《中华人民共和国药典》(PPRC, 2020)中被命名为何首乌,是由何首乌的块根提取而成。和首乌以降脂养肝而闻名。然而,近年来,合首武引起的肝毒性病例越来越多。研究人员已经开始研究何首乌对肝脏的矛盾作用。2,3,5,4'-四羟基二苯乙烯-2- o -β- d -葡萄糖苷(TSG)是合首乌丰富的功能成分,具有多种生物活性,其中对肝脏的作用值得关注。本文综述了TSG在肝保护和肝毒性方面的研究现状,并对TSG在肝保护和肝毒性方面的剂量、实验模型、作用及其作用机制进行了总结,旨在为今后TSG的研究提供思路,了解和首武对肝脏的作用。新出现的证据表明,TSG通过调节肝脏脂质代谢、抑制炎症反应和氧化应激,改善病理性肝损伤和化学诱导的肝损伤。然而,随着合首乌致肝损伤临床病例的报道,发现长期暴露于高剂量的TSG可引起肝细胞或肝组织损伤。此外,TSG可能通过影响合首乌中其他可能的肝氧化化合物的转运和代谢而引起肝毒性。研究表明,在光照下,反式TSG可以异构化为顺式TSG,并且在lps处理的大鼠中,顺式TSG对肝功能的危害剂量小于反式TSG。总之,TSG对肝脏有保护作用,但肝损伤通常发生在高剂量TSG下,或者是TSG特异性诱导的肝损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hepatic Effect of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, the Signature Component of Traditional Chinese Medicine Heshouwu: Advances and Prospects.

Traditional Chinese medicine Heshouwu, named Polygoni Multiflori Radix in Pharmacopoeia of the People's Republic of China (PPRC, 2020), is derived from the root tuber of Polygonum multiflorum Thunb., Heshouwu or processed Heshouwu is well known for its function in reducing lipids and nourishing the liver. However, increasing cases of Heshouwu-induced hepatotoxicity were reported in recent years. Researchers have begun to study the paradoxical effects of Heshouwu on the liver. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an abundant functional component of Heshouwu, shows various biological activities, among which its effect on the liver is worthy of attention. This paper reviews the current studies of TSG on hepatoprotection and hepatotoxicity, and summarizes the doses, experimental models, effects, and mechanisms of action involved in TSG's hepatoprotection and hepatotoxicity, aiming to provide insight for future study of TSG and understanding the effects of Heshouwu on the liver. Emerging evidence suggests that TSG ameliorates both pathological liver injury and chemical-induced liver injury by modulating lipid metabolism, inhibiting the inflammatory response and oxidative stress in the liver. However, with the reports of clinical cases of Heshouwu induced liver injury, it has been found that long-term exposure to a high dose of TSG cause hepatocyte or hepatic tissue damage. Moreover, TSG may cause hepatotoxicity by affecting the transport and metabolism of other possible hepatoxic compounds in Heshouwu. Studies indicate that trans-TSG can be isomerized into cis-TSG under illumination, and cis-TSG had a less detrimental dose to liver function than trans- TSG in LPS-treated rats. In brief, TSG has protective effects on the liver, but liver injury usually occurs under highdose TSG or is idiosyncratic TSG-induced liver injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative Stress in Preterm Neonatal Renal and Hepatic Functions. Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring. Development of Hot Melt Extruded Co-Formulated Artesunate and AmodiaquineSoluplus® Solid Dispersion System in Fixed-Dose Form: Amorphous State Characterization and Pharmacokinetic Evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1