{"title":"DDCAL:基于迭代特征缩放的数据均匀分布到低方差聚类。","authors":"Marian Lux, Stefanie Rinderle-Ma","doi":"10.1007/s00357-022-09428-6","DOIUrl":null,"url":null,"abstract":"<p><p>This work studies the problem of clustering one-dimensional data points such that they are evenly distributed over a given number of low variance clusters. One application is the visualization of data on choropleth maps or on business process models, but without over-emphasizing outliers. This enables the detection and differentiation of smaller clusters. The problem is tackled based on a heuristic algorithm called DDCAL (1d distribution cluster algorithm) that is based on iterative feature scaling which generates stable results of clusters. The effectiveness of the DDCAL algorithm is shown based on 5 artificial data sets with different distributions and 4 real-world data sets reflecting different use cases. Moreover, the results from DDCAL, by using these data sets, are compared to 11 existing clustering algorithms. The application of the DDCAL algorithm is illustrated through the visualization of pandemic and population data on choropleth maps as well as process mining results on process models.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"40 1","pages":"106-144"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873542/pdf/","citationCount":"1","resultStr":"{\"title\":\"DDCAL: Evenly Distributing Data into Low Variance Clusters Based on Iterative Feature Scaling.\",\"authors\":\"Marian Lux, Stefanie Rinderle-Ma\",\"doi\":\"10.1007/s00357-022-09428-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work studies the problem of clustering one-dimensional data points such that they are evenly distributed over a given number of low variance clusters. One application is the visualization of data on choropleth maps or on business process models, but without over-emphasizing outliers. This enables the detection and differentiation of smaller clusters. The problem is tackled based on a heuristic algorithm called DDCAL (1d distribution cluster algorithm) that is based on iterative feature scaling which generates stable results of clusters. The effectiveness of the DDCAL algorithm is shown based on 5 artificial data sets with different distributions and 4 real-world data sets reflecting different use cases. Moreover, the results from DDCAL, by using these data sets, are compared to 11 existing clustering algorithms. The application of the DDCAL algorithm is illustrated through the visualization of pandemic and population data on choropleth maps as well as process mining results on process models.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"40 1\",\"pages\":\"106-144\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873542/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-022-09428-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-022-09428-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
DDCAL: Evenly Distributing Data into Low Variance Clusters Based on Iterative Feature Scaling.
This work studies the problem of clustering one-dimensional data points such that they are evenly distributed over a given number of low variance clusters. One application is the visualization of data on choropleth maps or on business process models, but without over-emphasizing outliers. This enables the detection and differentiation of smaller clusters. The problem is tackled based on a heuristic algorithm called DDCAL (1d distribution cluster algorithm) that is based on iterative feature scaling which generates stable results of clusters. The effectiveness of the DDCAL algorithm is shown based on 5 artificial data sets with different distributions and 4 real-world data sets reflecting different use cases. Moreover, the results from DDCAL, by using these data sets, are compared to 11 existing clustering algorithms. The application of the DDCAL algorithm is illustrated through the visualization of pandemic and population data on choropleth maps as well as process mining results on process models.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.