构建开放政府数据的知识图谱:以新斯科舍省疾病数据集为例。

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2023-04-18 DOI:10.1186/s13326-023-00284-w
Enayat Rajabi, Rishi Midha, Jairo Francisco de Souza
{"title":"构建开放政府数据的知识图谱:以新斯科舍省疾病数据集为例。","authors":"Enayat Rajabi,&nbsp;Rishi Midha,&nbsp;Jairo Francisco de Souza","doi":"10.1186/s13326-023-00284-w","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of available datasets in open government data are statistical. They are widely published by various governments to be used by the public and data consumers. However, most open government data portals do not provide the five-star Linked Data standard datasets. The published datasets are isolated from one another while conceptually connected. This paper constructs a knowledge graph for the disease-related datasets of a Canadian government data portal, Nova Scotia Open Data. We leveraged the Semantic Web technologies to transform the disease-related datasets into Resource Description Framework (RDF) and enriched them with semantic rules. An RDF data model using the RDF Cube vocabulary was designed in this work to develop a graph that adheres to best practices and standards, allowing for expansion, modification and flexible re-use. The study also discusses the lessons learned during the cross-dimensional knowledge graph construction and integration of open statistical datasets from multiple sources.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"4"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111831/pdf/","citationCount":"1","resultStr":"{\"title\":\"Constructing a knowledge graph for open government data: the case of Nova Scotia disease datasets.\",\"authors\":\"Enayat Rajabi,&nbsp;Rishi Midha,&nbsp;Jairo Francisco de Souza\",\"doi\":\"10.1186/s13326-023-00284-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The majority of available datasets in open government data are statistical. They are widely published by various governments to be used by the public and data consumers. However, most open government data portals do not provide the five-star Linked Data standard datasets. The published datasets are isolated from one another while conceptually connected. This paper constructs a knowledge graph for the disease-related datasets of a Canadian government data portal, Nova Scotia Open Data. We leveraged the Semantic Web technologies to transform the disease-related datasets into Resource Description Framework (RDF) and enriched them with semantic rules. An RDF data model using the RDF Cube vocabulary was designed in this work to develop a graph that adheres to best practices and standards, allowing for expansion, modification and flexible re-use. The study also discusses the lessons learned during the cross-dimensional knowledge graph construction and integration of open statistical datasets from multiple sources.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"14 1\",\"pages\":\"4\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111831/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-023-00284-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-023-00284-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

开放政府数据中的大多数可用数据集都是统计数据。它们由各国政府广泛发布,供公众和数据消费者使用。然而,大多数开放的政府数据门户网站不提供五星级的关联数据标准数据集。发布的数据集彼此隔离,但在概念上是连接的。本文构建了加拿大政府数据门户网站Nova Scotia Open data的疾病相关数据集的知识图谱。我们利用语义Web技术将疾病相关数据集转换为资源描述框架(RDF),并用语义规则对其进行丰富。本文设计了一个使用RDF Cube词汇表的RDF数据模型,用于开发符合最佳实践和标准的图,允许扩展、修改和灵活重用。研究还讨论了跨维知识图谱构建和多源开放统计数据集集成的经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing a knowledge graph for open government data: the case of Nova Scotia disease datasets.

The majority of available datasets in open government data are statistical. They are widely published by various governments to be used by the public and data consumers. However, most open government data portals do not provide the five-star Linked Data standard datasets. The published datasets are isolated from one another while conceptually connected. This paper constructs a knowledge graph for the disease-related datasets of a Canadian government data portal, Nova Scotia Open Data. We leveraged the Semantic Web technologies to transform the disease-related datasets into Resource Description Framework (RDF) and enriched them with semantic rules. An RDF data model using the RDF Cube vocabulary was designed in this work to develop a graph that adheres to best practices and standards, allowing for expansion, modification and flexible re-use. The study also discusses the lessons learned during the cross-dimensional knowledge graph construction and integration of open statistical datasets from multiple sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. Concretizing plan specifications as realizables within the OBO foundry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1