Viviane Cantelli, Vitor Trancoso Brito, Fabricio Mezzomo Collares, Alvaro Della Bona
{"title":"3d打印义齿基托材料的生物力学行为。","authors":"Viviane Cantelli, Vitor Trancoso Brito, Fabricio Mezzomo Collares, Alvaro Della Bona","doi":"10.11607/ijp.8295","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate relevant material properties (flexural strength (σf), elastic modulus (E), water sorption (Wsp) and solubility (Wsl), and biocompatibility) of a 3D-printed resin (3D) and a heat cured acrylic resin (AR-control) used for complete denture manufacturing, testing the hypothesis that constructs from both materials would present acceptable material properties for clinical use.</p><p><strong>Materials and methods: </strong>The σf, E, Wsp and Wsl were evaluated according to the ISO 20795-1:2013 standard, and the biocompatibility was evaluated using 3-4,5-dimethyl-thiazol-2-yl-2.5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. Disk-shaped specimens were fabricated and used for Wsp (n = 5), Wsl (n = 5), and biocompatibility (n = 3). Bar-shaped specimens (n = 30) were fabricated and stored in 37⁰ C distilled water for 48 hours and 6 months before flexural testing in a universal testing machine with constant displacement rate (5 ± 1 mm/min) until fracture. Data from σf, E, Wsp, Wsl and biocompatibility were statistically analyzed using Student t test (α= 0.05), Weibull analysis was also used for σf and E data.</p><p><strong>Results: </strong>Significant differences between the two polymers were found for the evaluated material properties. Water storage for 6 months did not affect the flexural strength of 3D. Yet, the additive manufactured polymer showed inadequate flexural strength and water solubility values.</p><p><strong>Conclusion: </strong>Despite adequate biocompatibility and strength stability after 6 months of water storage, the additive manufactured polymer recommended for complete denture needs further development to improve the remaining material properties evaluated in this study.</p>","PeriodicalId":50292,"journal":{"name":"International Journal of Prosthodontics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical behavior of a 3D-printed denture base material.\",\"authors\":\"Viviane Cantelli, Vitor Trancoso Brito, Fabricio Mezzomo Collares, Alvaro Della Bona\",\"doi\":\"10.11607/ijp.8295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate relevant material properties (flexural strength (σf), elastic modulus (E), water sorption (Wsp) and solubility (Wsl), and biocompatibility) of a 3D-printed resin (3D) and a heat cured acrylic resin (AR-control) used for complete denture manufacturing, testing the hypothesis that constructs from both materials would present acceptable material properties for clinical use.</p><p><strong>Materials and methods: </strong>The σf, E, Wsp and Wsl were evaluated according to the ISO 20795-1:2013 standard, and the biocompatibility was evaluated using 3-4,5-dimethyl-thiazol-2-yl-2.5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. Disk-shaped specimens were fabricated and used for Wsp (n = 5), Wsl (n = 5), and biocompatibility (n = 3). Bar-shaped specimens (n = 30) were fabricated and stored in 37⁰ C distilled water for 48 hours and 6 months before flexural testing in a universal testing machine with constant displacement rate (5 ± 1 mm/min) until fracture. Data from σf, E, Wsp, Wsl and biocompatibility were statistically analyzed using Student t test (α= 0.05), Weibull analysis was also used for σf and E data.</p><p><strong>Results: </strong>Significant differences between the two polymers were found for the evaluated material properties. Water storage for 6 months did not affect the flexural strength of 3D. Yet, the additive manufactured polymer showed inadequate flexural strength and water solubility values.</p><p><strong>Conclusion: </strong>Despite adequate biocompatibility and strength stability after 6 months of water storage, the additive manufactured polymer recommended for complete denture needs further development to improve the remaining material properties evaluated in this study.</p>\",\"PeriodicalId\":50292,\"journal\":{\"name\":\"International Journal of Prosthodontics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prosthodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11607/ijp.8295\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prosthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/ijp.8295","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Biomechanical behavior of a 3D-printed denture base material.
Purpose: To evaluate relevant material properties (flexural strength (σf), elastic modulus (E), water sorption (Wsp) and solubility (Wsl), and biocompatibility) of a 3D-printed resin (3D) and a heat cured acrylic resin (AR-control) used for complete denture manufacturing, testing the hypothesis that constructs from both materials would present acceptable material properties for clinical use.
Materials and methods: The σf, E, Wsp and Wsl were evaluated according to the ISO 20795-1:2013 standard, and the biocompatibility was evaluated using 3-4,5-dimethyl-thiazol-2-yl-2.5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. Disk-shaped specimens were fabricated and used for Wsp (n = 5), Wsl (n = 5), and biocompatibility (n = 3). Bar-shaped specimens (n = 30) were fabricated and stored in 37⁰ C distilled water for 48 hours and 6 months before flexural testing in a universal testing machine with constant displacement rate (5 ± 1 mm/min) until fracture. Data from σf, E, Wsp, Wsl and biocompatibility were statistically analyzed using Student t test (α= 0.05), Weibull analysis was also used for σf and E data.
Results: Significant differences between the two polymers were found for the evaluated material properties. Water storage for 6 months did not affect the flexural strength of 3D. Yet, the additive manufactured polymer showed inadequate flexural strength and water solubility values.
Conclusion: Despite adequate biocompatibility and strength stability after 6 months of water storage, the additive manufactured polymer recommended for complete denture needs further development to improve the remaining material properties evaluated in this study.
期刊介绍:
Official Journal of the European Association for Osseointegration (EAO), the International College of Prosthodontists (ICP), the German Society of Prosthodontics and Dental Materials Science (DGPro), and the Italian Academy of Prosthetic Dentistry (AIOP)
Prosthodontics demands a clinical research emphasis on patient- and dentist-mediated concerns in the management of oral rehabilitation needs. It is about making and implementing the best clinical decisions to enhance patients'' quality of life via applied biologic architecture - a role that far exceeds that of traditional prosthetic dentistry, with its emphasis on materials and techniques. The International Journal of Prosthodontics is dedicated to exploring and developing this conceptual shift in the role of today''s prosthodontist, clinician, and educator alike. The editorial board is composed of a distinguished team of leading international scholars.