为无数替代方案积累证据:模拟自由联想的产生

IF 5.1 1区 心理学 Q1 PSYCHOLOGY Psychological review Pub Date : 2023-11-01 Epub Date: 2022-10-03 DOI:10.1037/rev0000397
Isaac Fradkin, Eran Eldar
{"title":"为无数替代方案积累证据:模拟自由联想的产生","authors":"Isaac Fradkin, Eran Eldar","doi":"10.1037/rev0000397","DOIUrl":null,"url":null,"abstract":"<p><p>The associative manner by which thoughts follow one another has intrigued scholars for decades. The process by which an association is generated in response to a cue can be explained by classic models of semantic processing through distinct computational mechanisms. Distributed attractor networks implement rich-get-richer dynamics and assume that stronger associations can be reached with fewer steps. Conversely, spreading activation models assume that a cue distributes its activation, in parallel, to all associations at a constant rate. Despite these models' huge influence, their intractability together with the unconstrained nature of free association have restricted their few previous uses to qualitative predictions. To test these computational mechanisms quantitatively, we conceptualize free association as the product of internal evidence accumulation and generate predictions concerning the speed and strength of people's associations. To this end, we first develop a novel approach to mapping the personalized space of words from which an individual chooses an association to a given cue. We then use state-of-the-art evidence accumulation models to demonstrate the function of rich-get-richer dynamics on the one hand and of stochasticity in the rate of spreading activation on the other hand, in preventing an exceedingly slow resolution of the competition among myriad potential associations. Furthermore, whereas our results uniformly indicate that stronger associations require less evidence, only in combination with rich-get-richer dynamics does this explain why weak associations are slow yet prevalent. We discuss implications for models of semantic processing and evidence accumulation and offer recommendations for practical applications and individual-differences research. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":" ","pages":"1492-1520"},"PeriodicalIF":5.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accumulating evidence for myriad alternatives: Modeling the generation of free association.\",\"authors\":\"Isaac Fradkin, Eran Eldar\",\"doi\":\"10.1037/rev0000397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The associative manner by which thoughts follow one another has intrigued scholars for decades. The process by which an association is generated in response to a cue can be explained by classic models of semantic processing through distinct computational mechanisms. Distributed attractor networks implement rich-get-richer dynamics and assume that stronger associations can be reached with fewer steps. Conversely, spreading activation models assume that a cue distributes its activation, in parallel, to all associations at a constant rate. Despite these models' huge influence, their intractability together with the unconstrained nature of free association have restricted their few previous uses to qualitative predictions. To test these computational mechanisms quantitatively, we conceptualize free association as the product of internal evidence accumulation and generate predictions concerning the speed and strength of people's associations. To this end, we first develop a novel approach to mapping the personalized space of words from which an individual chooses an association to a given cue. We then use state-of-the-art evidence accumulation models to demonstrate the function of rich-get-richer dynamics on the one hand and of stochasticity in the rate of spreading activation on the other hand, in preventing an exceedingly slow resolution of the competition among myriad potential associations. Furthermore, whereas our results uniformly indicate that stronger associations require less evidence, only in combination with rich-get-richer dynamics does this explain why weak associations are slow yet prevalent. We discuss implications for models of semantic processing and evidence accumulation and offer recommendations for practical applications and individual-differences research. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\" \",\"pages\":\"1492-1520\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000397\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000397","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

数十年来,学者们一直在研究思维的联想方式。经典的语义处理模型可以通过不同的计算机制来解释联想对线索的反应过程。分布式吸引子网络(Distributed attractor networks)实现了 "丰富者更丰富"(rich-get-rricher)的动态过程,并假定只需较少的步骤就能产生较强的联想。与此相反,扩散激活模型则假定线索会以恒定的速度将其激活并行分布到所有联想中。尽管这些模型具有巨大的影响力,但它们的难易程度以及自由联想的无约束性质,限制了它们之前在定性预测方面的少量应用。为了对这些计算机制进行定量测试,我们将自由联想概念化为内部证据积累的产物,并对人们联想的速度和强度进行预测。为此,我们首先开发了一种新颖的方法来映射个人化的词语空间,个人可从中选择与给定线索相关联的词语。然后,我们利用最先进的证据积累模型,一方面证明了 "富者愈富 "的动态机制的作用,另一方面证明了扩散激活率的随机性在防止无数潜在联想之间的竞争以极其缓慢的速度解决方面的作用。此外,虽然我们的研究结果一致表明,较强的联想需要较少的证据,但只有结合丰富-获得-再丰富动态,才能解释为什么较弱的联想速度缓慢但却普遍存在。我们讨论了语义处理和证据积累模型的意义,并对实际应用和个体差异研究提出了建议。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accumulating evidence for myriad alternatives: Modeling the generation of free association.

The associative manner by which thoughts follow one another has intrigued scholars for decades. The process by which an association is generated in response to a cue can be explained by classic models of semantic processing through distinct computational mechanisms. Distributed attractor networks implement rich-get-richer dynamics and assume that stronger associations can be reached with fewer steps. Conversely, spreading activation models assume that a cue distributes its activation, in parallel, to all associations at a constant rate. Despite these models' huge influence, their intractability together with the unconstrained nature of free association have restricted their few previous uses to qualitative predictions. To test these computational mechanisms quantitatively, we conceptualize free association as the product of internal evidence accumulation and generate predictions concerning the speed and strength of people's associations. To this end, we first develop a novel approach to mapping the personalized space of words from which an individual chooses an association to a given cue. We then use state-of-the-art evidence accumulation models to demonstrate the function of rich-get-richer dynamics on the one hand and of stochasticity in the rate of spreading activation on the other hand, in preventing an exceedingly slow resolution of the competition among myriad potential associations. Furthermore, whereas our results uniformly indicate that stronger associations require less evidence, only in combination with rich-get-richer dynamics does this explain why weak associations are slow yet prevalent. We discuss implications for models of semantic processing and evidence accumulation and offer recommendations for practical applications and individual-differences research. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological review
Psychological review 医学-心理学
CiteScore
9.70
自引率
5.60%
发文量
97
期刊介绍: Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.
期刊最新文献
How does depressive cognition develop? A state-dependent network model of predictive processing. A theory of flexible multimodal synchrony. Bouncing back from life's perturbations: Formalizing psychological resilience from a complex systems perspective. Bouncing back from life's perturbations: Formalizing psychological resilience from a complex systems perspective. The meaning of attention control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1