James H. McVittie, Ana F. Best, David B. Wolfson, David A. Stephens, Julian Wolfson, David L. Buckeridge, Shahinaz M. Gadalla
{"title":"合并队列数据的生存建模:打开Meta生存分析和使用电子健康记录进行生存分析的大门","authors":"James H. McVittie, Ana F. Best, David B. Wolfson, David A. Stephens, Julian Wolfson, David L. Buckeridge, Shahinaz M. Gadalla","doi":"10.1111/insr.12510","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 1","pages":"72-87"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12510","citationCount":"0","resultStr":"{\"title\":\"Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records\",\"authors\":\"James H. McVittie, Ana F. Best, David B. Wolfson, David A. Stephens, Julian Wolfson, David L. Buckeridge, Shahinaz M. Gadalla\",\"doi\":\"10.1111/insr.12510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.</p>\\n </div>\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":\"91 1\",\"pages\":\"72-87\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12510\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12510\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12510","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records
Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.