合并队列数据的生存建模:打开Meta生存分析和使用电子健康记录进行生存分析的大门

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-06-16 DOI:10.1111/insr.12510
James H. McVittie, Ana F. Best, David B. Wolfson, David A. Stephens, Julian Wolfson, David L. Buckeridge, Shahinaz M. Gadalla
{"title":"合并队列数据的生存建模:打开Meta生存分析和使用电子健康记录进行生存分析的大门","authors":"James H. McVittie,&nbsp;Ana F. Best,&nbsp;David B. Wolfson,&nbsp;David A. Stephens,&nbsp;Julian Wolfson,&nbsp;David L. Buckeridge,&nbsp;Shahinaz M. Gadalla","doi":"10.1111/insr.12510","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12510","citationCount":"0","resultStr":"{\"title\":\"Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records\",\"authors\":\"James H. McVittie,&nbsp;Ana F. Best,&nbsp;David B. Wolfson,&nbsp;David A. Stephens,&nbsp;Julian Wolfson,&nbsp;David L. Buckeridge,&nbsp;Shahinaz M. Gadalla\",\"doi\":\"10.1111/insr.12510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12510\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12510\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用观察到的故障时间数据对生存函数进行非参数估计取决于底层数据生成机制,包括数据可能被删节和/或截断的方式。对于来自单一来源或从单一队列收集的数据,文献中已经提出并比较了各种估计量。然而,通常情况下,将不同研究设计下收集到的生存数据进行合并和分析是可能的,而且确实是有利的。我们回顾了通过结合最常见的队列类型获得的数据的非参数生存分析。我们有两个主要目标:(i)澄清模型假设中的差异,(ii)提供一个单一的视角,通过这个视角可以查看一些建议的估计器。我们的讨论与从不同类型的研究中获得的生存数据的荟萃分析以及电子健康记录的现代时代有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records

Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyse survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) to clarify the differences in the model assumptions and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta-analysis of survival data obtained from different types of study, and to the modern era of electronic health records.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1