幼年猕猴骨髓间充质干细胞逆转老年猕猴血清蛋白表达谱。

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING Current stem cell research & therapy Pub Date : 2023-01-01 DOI:10.2174/1574888X17666220429111218
Qianqian Yu, Chuan Tian, Guanke Lv, Qingpeng Kong, Gonghua Li, Guangxu Zhu, Xiangqing Zhu, Xinghua Pan
{"title":"幼年猕猴骨髓间充质干细胞逆转老年猕猴血清蛋白表达谱。","authors":"Qianqian Yu,&nbsp;Chuan Tian,&nbsp;Guanke Lv,&nbsp;Qingpeng Kong,&nbsp;Gonghua Li,&nbsp;Guangxu Zhu,&nbsp;Xiangqing Zhu,&nbsp;Xinghua Pan","doi":"10.2174/1574888X17666220429111218","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study was to reveal the changes in serum protein composition and content in macaques during the process of ageing, and explore the effect of bone marrow mesenchymal stem cell (BMMSC) on the serum protein expression profile in elderly macaques.</p><p><strong>Methods: </strong>Naturally ageing macaques were assessed according to age. BMMSCs were intravenously infused into aged macaques. In addition, peripheral blood was collected to obtain serum for dataindependent acquisition (DIA) protein sequencing to identify aging-related indicators. One hundred eighty days after macaques received BMMSC treatment, haemoxylin and eosin (HE) staining was performed to observe the morphology and structure of aortic arches.</p><p><strong>Results: </strong>Compared to infant and young control macaques, aged macaques showed erythema on the face, dry skin, reduced amounts of hair on the head and back, and paleness. Cultured BMMSCs from the 4th passage (P4 BMMSCs) were grown in accordance with standards used to culture mesenchymal stem cells. After BMMSC treatment, the assessed aortic arches showed no calcium salt deposition or cell necrosis, and the characteristics of the serum protein expression profile tended to be similar to that of the infant and young groups, with the expression of 41 proteins upregulated with age and that of 30 proteins downregulated with age but upregulated after BMMSC treatment. Moreover, we identified 44 significantly differentially expressed proteins between the aged model and treatment groups; 11 of the upregulated proteins were related to vascular ageing, neuronal ageing and haematopoiesis, and 33 of the downregulated proteins were associated with neuronal ageing, cardiovascular disease, and tumours. Interestingly, S100 expression in serum was significantly decreased, COMP expression was significantly increased, NKAP expression reappeared, and LCN2, CSF1R, CORO1C, CSTB and RSU-1 expression disappeared after BMMSC treatment.</p><p><strong>Conclusion: </strong>BMMSCs can reverse ageing-related serum protein expression.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":"18 3","pages":"391-400"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone Marrow Mesenchymal Stem Cells Derived from Juvenile Macaques Reversed the Serum Protein Expression Profile in Aged Macaques.\",\"authors\":\"Qianqian Yu,&nbsp;Chuan Tian,&nbsp;Guanke Lv,&nbsp;Qingpeng Kong,&nbsp;Gonghua Li,&nbsp;Guangxu Zhu,&nbsp;Xiangqing Zhu,&nbsp;Xinghua Pan\",\"doi\":\"10.2174/1574888X17666220429111218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of the study was to reveal the changes in serum protein composition and content in macaques during the process of ageing, and explore the effect of bone marrow mesenchymal stem cell (BMMSC) on the serum protein expression profile in elderly macaques.</p><p><strong>Methods: </strong>Naturally ageing macaques were assessed according to age. BMMSCs were intravenously infused into aged macaques. In addition, peripheral blood was collected to obtain serum for dataindependent acquisition (DIA) protein sequencing to identify aging-related indicators. One hundred eighty days after macaques received BMMSC treatment, haemoxylin and eosin (HE) staining was performed to observe the morphology and structure of aortic arches.</p><p><strong>Results: </strong>Compared to infant and young control macaques, aged macaques showed erythema on the face, dry skin, reduced amounts of hair on the head and back, and paleness. Cultured BMMSCs from the 4th passage (P4 BMMSCs) were grown in accordance with standards used to culture mesenchymal stem cells. After BMMSC treatment, the assessed aortic arches showed no calcium salt deposition or cell necrosis, and the characteristics of the serum protein expression profile tended to be similar to that of the infant and young groups, with the expression of 41 proteins upregulated with age and that of 30 proteins downregulated with age but upregulated after BMMSC treatment. Moreover, we identified 44 significantly differentially expressed proteins between the aged model and treatment groups; 11 of the upregulated proteins were related to vascular ageing, neuronal ageing and haematopoiesis, and 33 of the downregulated proteins were associated with neuronal ageing, cardiovascular disease, and tumours. Interestingly, S100 expression in serum was significantly decreased, COMP expression was significantly increased, NKAP expression reappeared, and LCN2, CSF1R, CORO1C, CSTB and RSU-1 expression disappeared after BMMSC treatment.</p><p><strong>Conclusion: </strong>BMMSCs can reverse ageing-related serum protein expression.</p>\",\"PeriodicalId\":10979,\"journal\":{\"name\":\"Current stem cell research & therapy\",\"volume\":\"18 3\",\"pages\":\"391-400\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current stem cell research & therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1574888X17666220429111218\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X17666220429111218","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究衰老过程中猕猴血清蛋白组成及含量的变化,探讨骨髓间充质干细胞(BMMSC)对老年猕猴血清蛋白表达谱的影响。方法:对自然衰老猕猴按年龄进行评估。将BMMSCs静脉注入老年猕猴体内。此外,收集外周血获得血清,用于数据依赖获取(DIA)蛋白测序,以鉴定衰老相关指标。在接受骨髓间充质干细胞治疗180天后,采用血红素和伊红(HE)染色观察主动脉弓的形态和结构。结果:与婴儿和年轻的对照猕猴相比,老年猕猴表现出面部红斑,皮肤干燥,头部和背部毛发减少,脸色苍白。按照间充质干细胞培养标准培养第4代BMMSCs (P4 BMMSCs)。经BMMSC治疗后,评估的主动脉弓未出现钙盐沉积或细胞坏死,血清蛋白表达谱特征与婴幼儿组相似,41种蛋白随年龄升高表达,30种蛋白随年龄下调但BMMSC治疗后表达上调。此外,我们发现44个蛋白在老龄模型组和治疗组之间有显著差异表达;11种上调蛋白与血管老化、神经元老化和造血有关,33种下调蛋白与神经元老化、心血管疾病和肿瘤有关。有趣的是,BMMSC治疗后血清中S100表达显著降低,COMP表达显著升高,NKAP表达重新出现,LCN2、CSF1R、CORO1C、CSTB和RSU-1表达消失。结论:BMMSCs具有逆转衰老相关血清蛋白表达的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bone Marrow Mesenchymal Stem Cells Derived from Juvenile Macaques Reversed the Serum Protein Expression Profile in Aged Macaques.

Objective: The aim of the study was to reveal the changes in serum protein composition and content in macaques during the process of ageing, and explore the effect of bone marrow mesenchymal stem cell (BMMSC) on the serum protein expression profile in elderly macaques.

Methods: Naturally ageing macaques were assessed according to age. BMMSCs were intravenously infused into aged macaques. In addition, peripheral blood was collected to obtain serum for dataindependent acquisition (DIA) protein sequencing to identify aging-related indicators. One hundred eighty days after macaques received BMMSC treatment, haemoxylin and eosin (HE) staining was performed to observe the morphology and structure of aortic arches.

Results: Compared to infant and young control macaques, aged macaques showed erythema on the face, dry skin, reduced amounts of hair on the head and back, and paleness. Cultured BMMSCs from the 4th passage (P4 BMMSCs) were grown in accordance with standards used to culture mesenchymal stem cells. After BMMSC treatment, the assessed aortic arches showed no calcium salt deposition or cell necrosis, and the characteristics of the serum protein expression profile tended to be similar to that of the infant and young groups, with the expression of 41 proteins upregulated with age and that of 30 proteins downregulated with age but upregulated after BMMSC treatment. Moreover, we identified 44 significantly differentially expressed proteins between the aged model and treatment groups; 11 of the upregulated proteins were related to vascular ageing, neuronal ageing and haematopoiesis, and 33 of the downregulated proteins were associated with neuronal ageing, cardiovascular disease, and tumours. Interestingly, S100 expression in serum was significantly decreased, COMP expression was significantly increased, NKAP expression reappeared, and LCN2, CSF1R, CORO1C, CSTB and RSU-1 expression disappeared after BMMSC treatment.

Conclusion: BMMSCs can reverse ageing-related serum protein expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
期刊最新文献
Deciphering the Immunomodulatory Pathways of Mesenchymal Stem Cells Insights into Suture Stem Cells: Distributions, Characteristics, and Applications A Study on the Role of miR-126 in the Repair Process after Spinal Cord Injury Magnesium Regulates the Migration and Differentiation of NPMSCs via the Integrin Signaling Pathway Salvianolic Acid B Accelerates Osteoporotic Fracture Healing via LncRNA-MALAT1/miR-155-5p/HIF1A Axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1