Soyeon Lim, Sang Woo Kim, Il-Kwon Kim, Byeong-Wook Song, Seahyoung Lee
{"title":"器官芯片:在心血管研究中的应用。","authors":"Soyeon Lim, Sang Woo Kim, Il-Kwon Kim, Byeong-Wook Song, Seahyoung Lee","doi":"10.3233/CH-221428","DOIUrl":null,"url":null,"abstract":"Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.","PeriodicalId":10425,"journal":{"name":"Clinical hemorheology and microcirculation","volume":"83 4","pages":"315-339"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Organ-on-a-chip: Its use in cardiovascular research.\",\"authors\":\"Soyeon Lim, Sang Woo Kim, Il-Kwon Kim, Byeong-Wook Song, Seahyoung Lee\",\"doi\":\"10.3233/CH-221428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.\",\"PeriodicalId\":10425,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\"83 4\",\"pages\":\"315-339\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-221428\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CH-221428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Organ-on-a-chip: Its use in cardiovascular research.
Organ-on-a-chip (OOAC) has attracted great attention during the last decade as a revolutionary alternative to conventional animal models. This cutting-edge technology has also brought constructive changes to the field of cardiovascular research. The cardiovascular system, especially the heart as a well-protected vital organ, is virtually impossible to replicate in vitro with conventional approaches. This made scientists assume that they needed to use animal models for cardiovascular research. However, the frequent failure of animal models to correctly reflect the native cardiovascular system necessitated a search for alternative platforms for preclinical studies. Hence, as a promising alternative to conventional animal models, OOAC technology is being actively developed and tested in a wide range of biomedical fields, including cardiovascular research. Therefore, in this review, the current literature on the use of OOACs for cardiovascular research is presented with a focus on the basis for using OOACs, and what has been specifically achieved by using OOACs is also discussed. By providing an overview of the current status of OOACs in cardiovascular research and its future perspectives, we hope that this review can help to develop better and optimized research strategies for cardiovascular diseases (CVDs) as well as identify novel applications of OOACs in the near future.
期刊介绍:
Clinical Hemorheology and Microcirculation, a peer-reviewed international scientific journal, serves as an aid to understanding the flow properties of blood and the relationship to normal and abnormal physiology. The rapidly expanding science of hemorheology concerns blood, its components and the blood vessels with which blood interacts. It includes perihemorheology, i.e., the rheology of fluid and structures in the perivascular and interstitial spaces as well as the lymphatic system. The clinical aspects include pathogenesis, symptomatology and diagnostic methods, and the fields of prophylaxis and therapy in all branches of medicine and surgery, pharmacology and drug research.
The endeavour of the Editors-in-Chief and publishers of Clinical Hemorheology and Microcirculation is to bring together contributions from those working in various fields related to blood flow all over the world. The editors of Clinical Hemorheology and Microcirculation are from those countries in Europe, Asia, Australia and America where appreciable work in clinical hemorheology and microcirculation is being carried out. Each editor takes responsibility to decide on the acceptance of a manuscript. He is required to have the manuscript appraised by two referees and may be one of them himself. The executive editorial office, to which the manuscripts have been submitted, is responsible for rapid handling of the reviewing process.
Clinical Hemorheology and Microcirculation accepts original papers, brief communications, mini-reports and letters to the Editors-in-Chief. Review articles, providing general views and new insights into related subjects, are regularly invited by the Editors-in-Chief. Proceedings of international and national conferences on clinical hemorheology (in original form or as abstracts) complete the range of editorial features.