沉默 LAMC2 可通过抑制 NF-κB 信号通路逆转上皮间充质转化并抑制胰腺导管腺癌的进展

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Eukaryotic Gene Expression Pub Date : 2023-01-01 DOI:10.1615/CritRevEukaryotGeneExpr.2022045308
Lijuan Huang, Yan Han, Qingmin Zhou, Zhihao Sun, Jianhui Yan
{"title":"沉默 LAMC2 可通过抑制 NF-κB 信号通路逆转上皮间充质转化并抑制胰腺导管腺癌的进展","authors":"Lijuan Huang, Yan Han, Qingmin Zhou, Zhihao Sun, Jianhui Yan","doi":"10.1615/CritRevEukaryotGeneExpr.2022045308","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDAC. We screened out the highly expressed gene LAMC2 in PDAC tissues through the GEO online database, and further demonstrated that it is related to the poor prognosis of PDAC patients. Next, we investigated the effect of LAMC2 in the development and metastasis of PDAC by silencing LAMC2 expression in PDAC cells. The results showed that silencing of LAMC2 inhibited the proliferation, invasion and metastasis, and promoted apoptosis of PDAC cells, silencing of LAMC2 also reversed the epithelial mesenchymal transition (EMT) and suppressed the activation of NF-κB signaling pathway. Our results identify LAMC2 as a pivotal regulator of PDAC malignant progression, and its overexpression is sufficient to confer the characteristically aggressive clinical features of this disease.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 4","pages":"13-23"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silencing of LAMC2 Reverses Epithelial Mesenchymal Transition and Inhibits Progression in Pancreatic Ductal Adenocarcinoma via Inactivation of the NF-κB Signaling Pathway.\",\"authors\":\"Lijuan Huang, Yan Han, Qingmin Zhou, Zhihao Sun, Jianhui Yan\",\"doi\":\"10.1615/CritRevEukaryotGeneExpr.2022045308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDAC. We screened out the highly expressed gene LAMC2 in PDAC tissues through the GEO online database, and further demonstrated that it is related to the poor prognosis of PDAC patients. Next, we investigated the effect of LAMC2 in the development and metastasis of PDAC by silencing LAMC2 expression in PDAC cells. The results showed that silencing of LAMC2 inhibited the proliferation, invasion and metastasis, and promoted apoptosis of PDAC cells, silencing of LAMC2 also reversed the epithelial mesenchymal transition (EMT) and suppressed the activation of NF-κB signaling pathway. Our results identify LAMC2 as a pivotal regulator of PDAC malignant progression, and its overexpression is sufficient to confer the characteristically aggressive clinical features of this disease.</p>\",\"PeriodicalId\":56317,\"journal\":{\"name\":\"Critical Reviews in Eukaryotic Gene Expression\",\"volume\":\"33 4\",\"pages\":\"13-23\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Eukaryotic Gene Expression\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022045308\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2022045308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)仍然是最难治疗的恶性肿瘤之一。多模式疗法只能在短期内改善症状,对存活率的影响微乎其微,这凸显了对 PDAC 新型疗法和治疗策略的迫切需求。我们通过 GEO 在线数据库筛选出了 PDAC 组织中的高表达基因 LAMC2,并进一步证明它与 PDAC 患者的不良预后有关。接下来,我们通过沉默PDAC细胞中LAMC2的表达,研究了LAMC2在PDAC发病和转移中的作用。结果显示,沉默LAMC2可抑制PDAC细胞的增殖、侵袭和转移,并促进其凋亡;沉默LAMC2还可逆转上皮间质转化(EMT),抑制NF-κB信号通路的激活。我们的研究结果表明,LAMC2是PDAC恶性进展的关键调控因子,它的过表达足以使这种疾病具有典型的侵袭性临床特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silencing of LAMC2 Reverses Epithelial Mesenchymal Transition and Inhibits Progression in Pancreatic Ductal Adenocarcinoma via Inactivation of the NF-κB Signaling Pathway.

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDAC. We screened out the highly expressed gene LAMC2 in PDAC tissues through the GEO online database, and further demonstrated that it is related to the poor prognosis of PDAC patients. Next, we investigated the effect of LAMC2 in the development and metastasis of PDAC by silencing LAMC2 expression in PDAC cells. The results showed that silencing of LAMC2 inhibited the proliferation, invasion and metastasis, and promoted apoptosis of PDAC cells, silencing of LAMC2 also reversed the epithelial mesenchymal transition (EMT) and suppressed the activation of NF-κB signaling pathway. Our results identify LAMC2 as a pivotal regulator of PDAC malignant progression, and its overexpression is sufficient to confer the characteristically aggressive clinical features of this disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Eukaryotic Gene Expression
Critical Reviews in Eukaryotic Gene Expression 生物-生物工程与应用微生物
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
1 months
期刊介绍: Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource. Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.
期刊最新文献
Exosomal circ_001860 promotes colorectal cancer progression through miR-582-5p/ZEB1 axis Glycosaminoglycans (GAGs) adenogenesis factors: immunohistochemical espression in endometriosis tissues compared to the endometrium Curcumin-carbon dots suppress periodontitis via regulating METTL3/IRE1α signaling DNMT1-dependent DNA methylation of lncRNA FTX inhibits the ferroptosis of hepatocellular carcinoma A Review: The bioactivities and mechanisms of fungus extracts and compounds in colon cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1