Jung Hwan Park, Ju-Ro Lee, Sungkwon Park, Yu-Jin Kim, Jeong-Kee Yoon, Hyun Su Park, Jiyu Hyun, Yoon Ki Joung, Tae Il Lee, Suk Ho Bhang
{"title":"基于声波叠加的反重力生物反应器水下三维干细胞球形悬浮培养。","authors":"Jung Hwan Park, Ju-Ro Lee, Sungkwon Park, Yu-Jin Kim, Jeong-Kee Yoon, Hyun Su Park, Jiyu Hyun, Yoon Ki Joung, Tae Il Lee, Suk Ho Bhang","doi":"10.1186/s40824-023-00383-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods.</p><p><strong>Methods: </strong>In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids.</p><p><strong>Results: </strong>The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method.</p><p><strong>Conclusion: </strong>Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"51"},"PeriodicalIF":11.3000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197840/pdf/","citationCount":"1","resultStr":"{\"title\":\"Subaqueous 3D stem cell spheroid levitation culture using anti-gravity bioreactor based on sound wave superposition.\",\"authors\":\"Jung Hwan Park, Ju-Ro Lee, Sungkwon Park, Yu-Jin Kim, Jeong-Kee Yoon, Hyun Su Park, Jiyu Hyun, Yoon Ki Joung, Tae Il Lee, Suk Ho Bhang\",\"doi\":\"10.1186/s40824-023-00383-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods.</p><p><strong>Methods: </strong>In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids.</p><p><strong>Results: </strong>The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method.</p><p><strong>Conclusion: </strong>Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.</p>\",\"PeriodicalId\":9079,\"journal\":{\"name\":\"Biomaterials Research\",\"volume\":\"27 1\",\"pages\":\"51\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197840/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40824-023-00383-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00383-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Subaqueous 3D stem cell spheroid levitation culture using anti-gravity bioreactor based on sound wave superposition.
Background: Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods.
Methods: In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids.
Results: The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method.
Conclusion: Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.
期刊介绍:
Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.