M Emin Sahin, Hasan Ulutas, Esra Yuce, Mustafa Fatih Erkoc
{"title":"利用更快R-CNN和屏蔽R-CNN对CT图像进行检测和分类。","authors":"M Emin Sahin, Hasan Ulutas, Esra Yuce, Mustafa Fatih Erkoc","doi":"10.1007/s00521-023-08450-y","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus (COVID-19) pandemic has a devastating impact on people's daily lives and healthcare systems. The rapid spread of this virus should be stopped by early detection of infected patients through efficient screening. Artificial intelligence techniques are used for accurate disease detection in computed tomography (CT) images. This article aims to develop a process that can accurately diagnose COVID-19 using deep learning techniques on CT images. Using CT images collected from Yozgat Bozok University, the presented method begins with the creation of an original dataset, which includes 4000 CT images. The faster R-CNN and mask R-CNN methods are presented for this purpose in order to train and test the dataset to categorize patients with COVID-19 and pneumonia infections. In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. The faster R-CNN model used in the study has an accuracy rate of 93.86%, and the ROI (region of interest) classification loss is 0.061 per ROI. At the conclusion of the final training, the mask R-CNN model generates mAP (mean average precision) values for ResNet-50 and ResNet-101, respectively, of 97.72% and 95.65%. The results for five folds are obtained by applying the cross-validation to the methods used. With training, our model performs better than the industry standard baselines and can help with automated COVID-19 severity quantification in CT images.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 18","pages":"13597-13611"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014413/pdf/","citationCount":"5","resultStr":"{\"title\":\"Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images.\",\"authors\":\"M Emin Sahin, Hasan Ulutas, Esra Yuce, Mustafa Fatih Erkoc\",\"doi\":\"10.1007/s00521-023-08450-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coronavirus (COVID-19) pandemic has a devastating impact on people's daily lives and healthcare systems. The rapid spread of this virus should be stopped by early detection of infected patients through efficient screening. Artificial intelligence techniques are used for accurate disease detection in computed tomography (CT) images. This article aims to develop a process that can accurately diagnose COVID-19 using deep learning techniques on CT images. Using CT images collected from Yozgat Bozok University, the presented method begins with the creation of an original dataset, which includes 4000 CT images. The faster R-CNN and mask R-CNN methods are presented for this purpose in order to train and test the dataset to categorize patients with COVID-19 and pneumonia infections. In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. The faster R-CNN model used in the study has an accuracy rate of 93.86%, and the ROI (region of interest) classification loss is 0.061 per ROI. At the conclusion of the final training, the mask R-CNN model generates mAP (mean average precision) values for ResNet-50 and ResNet-101, respectively, of 97.72% and 95.65%. The results for five folds are obtained by applying the cross-validation to the methods used. With training, our model performs better than the industry standard baselines and can help with automated COVID-19 severity quantification in CT images.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 18\",\"pages\":\"13597-13611\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014413/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-023-08450-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08450-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
摘要
冠状病毒(COVID-19)大流行对人们的日常生活和医疗保健系统造成了毁灭性影响。应通过有效筛查,及早发现受感染患者,阻止这种病毒的迅速传播。人工智能技术用于计算机断层扫描(CT)图像的准确疾病检测。本文旨在开发一种利用CT图像的深度学习技术准确诊断COVID-19的过程。使用从Yozgat Bozok大学收集的CT图像,提出的方法首先创建一个原始数据集,其中包括4000张CT图像。为此提出了更快的R-CNN和mask R-CNN方法,以训练和测试数据集,对COVID-19和肺炎感染患者进行分类。在本研究中,将VGG-16用于更快的R-CNN模型,ResNet-50和ResNet-101骨干网用于掩模R-CNN的结果进行了比较。研究中使用的更快的R-CNN模型准确率为93.86%,每个ROI的ROI(兴趣区域)分类损失为0.061。在最终训练结束时,掩码R-CNN模型对ResNet-50和ResNet-101分别生成了97.72%和95.65%的mAP (mean average precision)值。通过对所使用的方法进行交叉验证,获得了五倍的结果。经过训练,我们的模型比行业标准基线表现更好,可以帮助CT图像中自动量化COVID-19严重程度。
Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images.
The coronavirus (COVID-19) pandemic has a devastating impact on people's daily lives and healthcare systems. The rapid spread of this virus should be stopped by early detection of infected patients through efficient screening. Artificial intelligence techniques are used for accurate disease detection in computed tomography (CT) images. This article aims to develop a process that can accurately diagnose COVID-19 using deep learning techniques on CT images. Using CT images collected from Yozgat Bozok University, the presented method begins with the creation of an original dataset, which includes 4000 CT images. The faster R-CNN and mask R-CNN methods are presented for this purpose in order to train and test the dataset to categorize patients with COVID-19 and pneumonia infections. In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. The faster R-CNN model used in the study has an accuracy rate of 93.86%, and the ROI (region of interest) classification loss is 0.061 per ROI. At the conclusion of the final training, the mask R-CNN model generates mAP (mean average precision) values for ResNet-50 and ResNet-101, respectively, of 97.72% and 95.65%. The results for five folds are obtained by applying the cross-validation to the methods used. With training, our model performs better than the industry standard baselines and can help with automated COVID-19 severity quantification in CT images.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.