{"title":"ABOA-CNN:基于拍卖的卷积神经网络肺部疾病预测优化算法。","authors":"Balaji Annamalai, Prabakeran Saravanan, Indumathi Varadharajan","doi":"10.1007/s00521-022-08033-3","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, deep learning plays a vital role behind many of the emerging technologies. Few applications of deep learning include speech recognition, virtual assistant, healthcare, entertainment, and so on. In healthcare applications, deep learning can be used to predict diseases effectively. It is a type of computer model that learns in conducting classification tasks directly from text, sound, or images. It also provides better accuracy and sometimes outdoes human performance. We presented a novel approach that makes use of the deep learning method in our proposed work. The prediction of pulmonary disease can be performed with the aid of convolutional neural network (CNN) incorporated with auction-based optimization algorithm (ABOA) and DSC process. The traditional CNN ignores the dominant features from the X-ray images while performing the feature extraction process. This can be effectively circumvented by the adoption of ABOA, and the DSC is used to classify the pulmonary disease types such as fibrosis, pneumonia, cardiomegaly, and normal from the X-ray images. We have taken two datasets, namely the NIH Chest X-ray dataset and ChestX-ray8. The performances of the proposed approach are compared with deep learning-based state-of-art works such as BPD, DL, CSS-DL, and Grad-CAM. From the performance analyses, it is confirmed that the proposed approach effectively extracts the features from the X-ray images, and thus, the prediction of pulmonary diseases is more accurate than the state-of-art approaches.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 10","pages":"7463-7474"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910772/pdf/","citationCount":"2","resultStr":"{\"title\":\"ABOA-CNN: auction-based optimization algorithm with convolutional neural network for pulmonary disease prediction.\",\"authors\":\"Balaji Annamalai, Prabakeran Saravanan, Indumathi Varadharajan\",\"doi\":\"10.1007/s00521-022-08033-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, deep learning plays a vital role behind many of the emerging technologies. Few applications of deep learning include speech recognition, virtual assistant, healthcare, entertainment, and so on. In healthcare applications, deep learning can be used to predict diseases effectively. It is a type of computer model that learns in conducting classification tasks directly from text, sound, or images. It also provides better accuracy and sometimes outdoes human performance. We presented a novel approach that makes use of the deep learning method in our proposed work. The prediction of pulmonary disease can be performed with the aid of convolutional neural network (CNN) incorporated with auction-based optimization algorithm (ABOA) and DSC process. The traditional CNN ignores the dominant features from the X-ray images while performing the feature extraction process. This can be effectively circumvented by the adoption of ABOA, and the DSC is used to classify the pulmonary disease types such as fibrosis, pneumonia, cardiomegaly, and normal from the X-ray images. We have taken two datasets, namely the NIH Chest X-ray dataset and ChestX-ray8. The performances of the proposed approach are compared with deep learning-based state-of-art works such as BPD, DL, CSS-DL, and Grad-CAM. From the performance analyses, it is confirmed that the proposed approach effectively extracts the features from the X-ray images, and thus, the prediction of pulmonary diseases is more accurate than the state-of-art approaches.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 10\",\"pages\":\"7463-7474\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910772/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-08033-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-08033-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ABOA-CNN: auction-based optimization algorithm with convolutional neural network for pulmonary disease prediction.
Nowadays, deep learning plays a vital role behind many of the emerging technologies. Few applications of deep learning include speech recognition, virtual assistant, healthcare, entertainment, and so on. In healthcare applications, deep learning can be used to predict diseases effectively. It is a type of computer model that learns in conducting classification tasks directly from text, sound, or images. It also provides better accuracy and sometimes outdoes human performance. We presented a novel approach that makes use of the deep learning method in our proposed work. The prediction of pulmonary disease can be performed with the aid of convolutional neural network (CNN) incorporated with auction-based optimization algorithm (ABOA) and DSC process. The traditional CNN ignores the dominant features from the X-ray images while performing the feature extraction process. This can be effectively circumvented by the adoption of ABOA, and the DSC is used to classify the pulmonary disease types such as fibrosis, pneumonia, cardiomegaly, and normal from the X-ray images. We have taken two datasets, namely the NIH Chest X-ray dataset and ChestX-ray8. The performances of the proposed approach are compared with deep learning-based state-of-art works such as BPD, DL, CSS-DL, and Grad-CAM. From the performance analyses, it is confirmed that the proposed approach effectively extracts the features from the X-ray images, and thus, the prediction of pulmonary diseases is more accurate than the state-of-art approaches.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.