Daniel J García-Domínguez, Víctor Sánchez-Margalet, Luis de la Cruz-Merino, Lourdes Hontecillas-Prieto
{"title":"了解髓源性抑制细胞:肉瘤患者的另一个敌人。","authors":"Daniel J García-Domínguez, Víctor Sánchez-Margalet, Luis de la Cruz-Merino, Lourdes Hontecillas-Prieto","doi":"10.1016/bs.ircmb.2022.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcomas are heterogeneous and aggressive malignant tumors with variable responses to current standard treatments being usually incurable for those patients with metastatic and unresectable diseases. The lack of curative strategies has led to develop new therapies in the treatment of sarcomas where the role of immune system is an evolving field. Most sarcomas often exhibit an immunosuppressive microenvironment, which reduces their capacity to trigger an immune response. Therefore, sarcomas are broadly considered as an \"immune cold\" tumor, although some studies have described a great immune heterogeneity across sarcoma subtypes. Sarcoma cells, like other tumors, evade their immune destruction through a variety of mechanisms, including expansion and recruitment of myeloid derived suppressor cells (MDSCs). MDSCs are immature myeloid cells that have been correlated with a reduction of the therapeutic efficacy, including immunotherapy, tumor progression and worst prognosis. Consequently, different strategies have been developed in recent years to target MDSCs in cancer treatments. This chapter discusses the role of MDSCs in sarcomas and their current potential as a therapeutic target in these malignancies.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowing the myeloid-derived suppressor cells: Another enemy of sarcomas patients.\",\"authors\":\"Daniel J García-Domínguez, Víctor Sánchez-Margalet, Luis de la Cruz-Merino, Lourdes Hontecillas-Prieto\",\"doi\":\"10.1016/bs.ircmb.2022.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sarcomas are heterogeneous and aggressive malignant tumors with variable responses to current standard treatments being usually incurable for those patients with metastatic and unresectable diseases. The lack of curative strategies has led to develop new therapies in the treatment of sarcomas where the role of immune system is an evolving field. Most sarcomas often exhibit an immunosuppressive microenvironment, which reduces their capacity to trigger an immune response. Therefore, sarcomas are broadly considered as an \\\"immune cold\\\" tumor, although some studies have described a great immune heterogeneity across sarcoma subtypes. Sarcoma cells, like other tumors, evade their immune destruction through a variety of mechanisms, including expansion and recruitment of myeloid derived suppressor cells (MDSCs). MDSCs are immature myeloid cells that have been correlated with a reduction of the therapeutic efficacy, including immunotherapy, tumor progression and worst prognosis. Consequently, different strategies have been developed in recent years to target MDSCs in cancer treatments. This chapter discusses the role of MDSCs in sarcomas and their current potential as a therapeutic target in these malignancies.</p>\",\"PeriodicalId\":14422,\"journal\":{\"name\":\"International review of cell and molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International review of cell and molecular biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ircmb.2022.11.003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2022.11.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Knowing the myeloid-derived suppressor cells: Another enemy of sarcomas patients.
Sarcomas are heterogeneous and aggressive malignant tumors with variable responses to current standard treatments being usually incurable for those patients with metastatic and unresectable diseases. The lack of curative strategies has led to develop new therapies in the treatment of sarcomas where the role of immune system is an evolving field. Most sarcomas often exhibit an immunosuppressive microenvironment, which reduces their capacity to trigger an immune response. Therefore, sarcomas are broadly considered as an "immune cold" tumor, although some studies have described a great immune heterogeneity across sarcoma subtypes. Sarcoma cells, like other tumors, evade their immune destruction through a variety of mechanisms, including expansion and recruitment of myeloid derived suppressor cells (MDSCs). MDSCs are immature myeloid cells that have been correlated with a reduction of the therapeutic efficacy, including immunotherapy, tumor progression and worst prognosis. Consequently, different strategies have been developed in recent years to target MDSCs in cancer treatments. This chapter discusses the role of MDSCs in sarcomas and their current potential as a therapeutic target in these malignancies.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.