Princi Verma, G D Gupta, Tanmay S Markandeywar, Dilpreet Singh
{"title":"高分子胶束的关键逗留:技术概念、最新进展和未来展望。","authors":"Princi Verma, G D Gupta, Tanmay S Markandeywar, Dilpreet Singh","doi":"10.1089/adt.2022.079","DOIUrl":null,"url":null,"abstract":"<p><p><i>Poorly soluble drug molecules/phytoconstituents are still a growing concern for biopharmaceutical delivery in the body. Polymeric micelles are the amphiphilic block copolymers and have been widely investigated as targeted nanocarriers for the treatment of various ailments. The versatility of nanocarriers is the self-assembling properties in the aqueous medium and forms a stable isotropic system</i> in vivo<i>. The hydrophobic core-hydrophilic shell configuration of the polymers used to the mixed micelles makes easy encapsulation of hydrophobic and hydrophilic drugs into the core. Polymeric micelles can also be combined with targeting ligands that increase their uptake by specific cells, decreasing off-target effects, and provide enhanced therapeutic effect. In the present review, we primarily focused on a critical appraisal of Polymeric micelles along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials. In addition, the biological applications of this isotropic nanocarrier have been duly presented in each route of administration along with suitable case studies.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 2","pages":"31-47"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Critical Sojourn of Polymeric Micelles: Technological Concepts, Recent Advances, and Future Prospects.\",\"authors\":\"Princi Verma, G D Gupta, Tanmay S Markandeywar, Dilpreet Singh\",\"doi\":\"10.1089/adt.2022.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Poorly soluble drug molecules/phytoconstituents are still a growing concern for biopharmaceutical delivery in the body. Polymeric micelles are the amphiphilic block copolymers and have been widely investigated as targeted nanocarriers for the treatment of various ailments. The versatility of nanocarriers is the self-assembling properties in the aqueous medium and forms a stable isotropic system</i> in vivo<i>. The hydrophobic core-hydrophilic shell configuration of the polymers used to the mixed micelles makes easy encapsulation of hydrophobic and hydrophilic drugs into the core. Polymeric micelles can also be combined with targeting ligands that increase their uptake by specific cells, decreasing off-target effects, and provide enhanced therapeutic effect. In the present review, we primarily focused on a critical appraisal of Polymeric micelles along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials. In addition, the biological applications of this isotropic nanocarrier have been duly presented in each route of administration along with suitable case studies.</i></p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\"21 2\",\"pages\":\"31-47\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2022.079\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2022.079","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Critical Sojourn of Polymeric Micelles: Technological Concepts, Recent Advances, and Future Prospects.
Poorly soluble drug molecules/phytoconstituents are still a growing concern for biopharmaceutical delivery in the body. Polymeric micelles are the amphiphilic block copolymers and have been widely investigated as targeted nanocarriers for the treatment of various ailments. The versatility of nanocarriers is the self-assembling properties in the aqueous medium and forms a stable isotropic system in vivo. The hydrophobic core-hydrophilic shell configuration of the polymers used to the mixed micelles makes easy encapsulation of hydrophobic and hydrophilic drugs into the core. Polymeric micelles can also be combined with targeting ligands that increase their uptake by specific cells, decreasing off-target effects, and provide enhanced therapeutic effect. In the present review, we primarily focused on a critical appraisal of Polymeric micelles along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials. In addition, the biological applications of this isotropic nanocarrier have been duly presented in each route of administration along with suitable case studies.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts