中白垩世轨道鸟的全球演化与古地理分布。

Marcelle BouDagher-Fadel, Geoffrey David Price
{"title":"中白垩世轨道鸟的全球演化与古地理分布。","authors":"Marcelle BouDagher-Fadel,&nbsp;Geoffrey David Price","doi":"10.14324/111.444/ucloe.000001","DOIUrl":null,"url":null,"abstract":"<p><p>Members of the Larger Benthic Foraminiferal (LBF) family Orbitolinidae occurred from the Cretaceous to the Paleogene, however, they were most diverse during the mid-Cretaceous, and dominated the agglutinated LBF assemblages described from limestones of that period. Various orbitolinid species have been used to zone and date lithologies formed in the shallow, warm waters of the Aptian to the early Cenomanian, and many, sometimes inaccurate, generic and sub-generic nomenclatures have been proposed to differentiate the often-subtle morphological changes that orbitolinids exhibit over time. Also, until now, it has not been possible to develop an effective global overview of their evolution and environmental development because descriptions of specimens from Asia have been relatively rare. Following our recent study of over 1800 orbitolinid-rich thin sections of material from 13 outcrops of Langshan limestone, from the Southern Tibetan Plateau, and from the Barito Basin, South Kalimantan, Indonesia, it has been possible to compare the stratigraphic ranges of these orbitolinids with previously described Tethyan and American forms, based on the use of a planktonic zonal (PZ) scheme, itself tied to the most recent chronostratigraphic scale. This has allowed the reconstruction of the phylogenetic and paleogeographic evolution of the orbitolinids from their Valanginian origin in the Tethys. Although the Tethys remained the paleogeographic centre for the orbitolinids, it is inferred here for the first time that a bi-directional paleogeographic migration of some orbitolinid genera occurred from the Tethys to the Americas and also to the Western Pacific region. Our observations and dating suggest that global marine regressions in the Aptian were coincident with, and may well have facilitated, these orbitolinid transoceanic migrations. Migration stopped however after rising sea level in the early Albian appears to have again isolated these provinces from each other. Tectonic forces associated with the subduction of the Farallon Plate and further sea level raises led to the opening of the Western Interior Seaway in North America, which correlates with, and may have been the cause of, the middle Albian (top of PZ Albian 2) extinction of the American orbitolinids. The extinction of the orbitolinids revealed that the Western Pacific province was split into two sub-provinces, with extinction occurring at the end of the early Albian (top of PZ Albian 1) in the Northwest Pacific sub-province, and at the end of the Albian (top of PZ Albian 4) in the subprovince that is today South East Asia (on the margins and west of the Wallace Line). The final near extinction of the orbitolinids occurred at the end of the Cenomanian in the Tethyan province, which coincides with, and may have been caused by, global anoxic oceanic events that correlate with a near-peak Mesozoic eustatic sea level high-stand that led to the overall global collapse of the paleotropical reef ecosystem at that time.</p>","PeriodicalId":75271,"journal":{"name":"UCL open environment","volume":"1 ","pages":"e001"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171425/pdf/","citationCount":"17","resultStr":"{\"title\":\"Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids.\",\"authors\":\"Marcelle BouDagher-Fadel,&nbsp;Geoffrey David Price\",\"doi\":\"10.14324/111.444/ucloe.000001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Members of the Larger Benthic Foraminiferal (LBF) family Orbitolinidae occurred from the Cretaceous to the Paleogene, however, they were most diverse during the mid-Cretaceous, and dominated the agglutinated LBF assemblages described from limestones of that period. Various orbitolinid species have been used to zone and date lithologies formed in the shallow, warm waters of the Aptian to the early Cenomanian, and many, sometimes inaccurate, generic and sub-generic nomenclatures have been proposed to differentiate the often-subtle morphological changes that orbitolinids exhibit over time. Also, until now, it has not been possible to develop an effective global overview of their evolution and environmental development because descriptions of specimens from Asia have been relatively rare. Following our recent study of over 1800 orbitolinid-rich thin sections of material from 13 outcrops of Langshan limestone, from the Southern Tibetan Plateau, and from the Barito Basin, South Kalimantan, Indonesia, it has been possible to compare the stratigraphic ranges of these orbitolinids with previously described Tethyan and American forms, based on the use of a planktonic zonal (PZ) scheme, itself tied to the most recent chronostratigraphic scale. This has allowed the reconstruction of the phylogenetic and paleogeographic evolution of the orbitolinids from their Valanginian origin in the Tethys. Although the Tethys remained the paleogeographic centre for the orbitolinids, it is inferred here for the first time that a bi-directional paleogeographic migration of some orbitolinid genera occurred from the Tethys to the Americas and also to the Western Pacific region. Our observations and dating suggest that global marine regressions in the Aptian were coincident with, and may well have facilitated, these orbitolinid transoceanic migrations. Migration stopped however after rising sea level in the early Albian appears to have again isolated these provinces from each other. Tectonic forces associated with the subduction of the Farallon Plate and further sea level raises led to the opening of the Western Interior Seaway in North America, which correlates with, and may have been the cause of, the middle Albian (top of PZ Albian 2) extinction of the American orbitolinids. The extinction of the orbitolinids revealed that the Western Pacific province was split into two sub-provinces, with extinction occurring at the end of the early Albian (top of PZ Albian 1) in the Northwest Pacific sub-province, and at the end of the Albian (top of PZ Albian 4) in the subprovince that is today South East Asia (on the margins and west of the Wallace Line). The final near extinction of the orbitolinids occurred at the end of the Cenomanian in the Tethyan province, which coincides with, and may have been caused by, global anoxic oceanic events that correlate with a near-peak Mesozoic eustatic sea level high-stand that led to the overall global collapse of the paleotropical reef ecosystem at that time.</p>\",\"PeriodicalId\":75271,\"journal\":{\"name\":\"UCL open environment\",\"volume\":\"1 \",\"pages\":\"e001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171425/pdf/\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UCL open environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14324/111.444/ucloe.000001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UCL open environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14324/111.444/ucloe.000001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

大底栖有孔虫(large Benthic foraminifal, LBF)科的成员出现于白垩纪至古近纪,但它们在白垩纪中期最为多样化,并主导了该时期石灰石中描述的大底栖有孔虫(large Benthic foraminifal, LBF)的粘连组合。在阿普tian到早期Cenomanian的浅水温暖水域中,各种各样的岩纹石被用来划分和确定岩性,并且提出了许多(有时是不准确的)属和亚属命名法来区分岩纹石随时间而表现出的通常微妙的形态变化。此外,到目前为止,由于对亚洲标本的描述相对较少,因此不可能对它们的进化和环境发展进行有效的全球概述。我们最近研究了来自青藏高原南部和印度尼西亚南加里曼丹Barito盆地的13块朗山石灰岩露头的1800多块富含轨道石的薄片,基于浮游地带性(PZ)方案的使用,将这些轨道石的地层范围与先前描述的特提斯和美洲形式进行了比较,该方案本身与最新的年代地层尺度有关。这使得从特提斯的瓦兰吉尼亚起源开始的轨道类恐龙的系统发育和古地理演化得以重建。尽管特提斯仍然是轨道鸟的古地理中心,但本文首次推断出轨道鸟属的双向古地理迁移发生在特提斯至美洲和西太平洋地区。我们的观察和年代测定表明,阿普tian的全球海洋回归与这些轨道线越洋迁移是一致的,并且很可能促进了这些迁移。然而,在早期的海平面上升之后,移民停止了,似乎再次将这些省份彼此隔离开来。与法拉龙板块的俯冲和海平面的进一步上升相关的构造力导致了北美西部内陆海道的打开,这与美洲轨道线的灭绝(PZ Albian 2的顶部)有关,也可能是其原因。轨道鸟的灭绝表明西太平洋省被划分为两个亚省,灭绝发生在西北太平洋亚省的早期阿尔比安末期(PZ阿尔比安1的顶部),以及今天东南亚亚省的阿尔比安末期(PZ阿尔比安4的顶部)(华莱士线的边缘和西部)。轨道鸟最后一次濒临灭绝发生在特提斯省的塞诺曼尼亚末期,这与全球缺氧海洋事件相吻合,也可能是由全球缺氧海洋事件引起的,这些事件与中生代海平面上升高峰的接近高峰有关,导致当时全球古热带珊瑚礁生态系统的全面崩溃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids.

Members of the Larger Benthic Foraminiferal (LBF) family Orbitolinidae occurred from the Cretaceous to the Paleogene, however, they were most diverse during the mid-Cretaceous, and dominated the agglutinated LBF assemblages described from limestones of that period. Various orbitolinid species have been used to zone and date lithologies formed in the shallow, warm waters of the Aptian to the early Cenomanian, and many, sometimes inaccurate, generic and sub-generic nomenclatures have been proposed to differentiate the often-subtle morphological changes that orbitolinids exhibit over time. Also, until now, it has not been possible to develop an effective global overview of their evolution and environmental development because descriptions of specimens from Asia have been relatively rare. Following our recent study of over 1800 orbitolinid-rich thin sections of material from 13 outcrops of Langshan limestone, from the Southern Tibetan Plateau, and from the Barito Basin, South Kalimantan, Indonesia, it has been possible to compare the stratigraphic ranges of these orbitolinids with previously described Tethyan and American forms, based on the use of a planktonic zonal (PZ) scheme, itself tied to the most recent chronostratigraphic scale. This has allowed the reconstruction of the phylogenetic and paleogeographic evolution of the orbitolinids from their Valanginian origin in the Tethys. Although the Tethys remained the paleogeographic centre for the orbitolinids, it is inferred here for the first time that a bi-directional paleogeographic migration of some orbitolinid genera occurred from the Tethys to the Americas and also to the Western Pacific region. Our observations and dating suggest that global marine regressions in the Aptian were coincident with, and may well have facilitated, these orbitolinid transoceanic migrations. Migration stopped however after rising sea level in the early Albian appears to have again isolated these provinces from each other. Tectonic forces associated with the subduction of the Farallon Plate and further sea level raises led to the opening of the Western Interior Seaway in North America, which correlates with, and may have been the cause of, the middle Albian (top of PZ Albian 2) extinction of the American orbitolinids. The extinction of the orbitolinids revealed that the Western Pacific province was split into two sub-provinces, with extinction occurring at the end of the early Albian (top of PZ Albian 1) in the Northwest Pacific sub-province, and at the end of the Albian (top of PZ Albian 4) in the subprovince that is today South East Asia (on the margins and west of the Wallace Line). The final near extinction of the orbitolinids occurred at the end of the Cenomanian in the Tethyan province, which coincides with, and may have been caused by, global anoxic oceanic events that correlate with a near-peak Mesozoic eustatic sea level high-stand that led to the overall global collapse of the paleotropical reef ecosystem at that time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊最新文献
Procedural justice and (in)equitable participation in climate negotiations. Miniaturisation of the Daphnia magna immobilisation assay for the reliable testing of low volume samples. A virtual global carbon price is essential to drive rapid decarbonisation. Urinary arsenic species and birth outcomes in Tacna, Peru, 2019: a prospective cohort study. Hydrophobic treatments and their application with internal wall insulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1