Bigelovin通过调控mapt介导的Fas/FasL通路抑制肝癌细胞的生长和转移。

IF 2 4区 医学 Q3 ONCOLOGY Neoplasma Pub Date : 2023-04-01 DOI:10.4149/neo_2023_221125N1132
Bei Wang, Chun-Hui Nie, Jun Xu, Da-Long Wan, Xiao Xu, Jiang-Juan He
{"title":"Bigelovin通过调控mapt介导的Fas/FasL通路抑制肝癌细胞的生长和转移。","authors":"Bei Wang,&nbsp;Chun-Hui Nie,&nbsp;Jun Xu,&nbsp;Da-Long Wan,&nbsp;Xiao Xu,&nbsp;Jiang-Juan He","doi":"10.4149/neo_2023_221125N1132","DOIUrl":null,"url":null,"abstract":"<p><p>Bigelovin (BigV), as traditional Chinese medicine, has been shown to inhibit the malignant progression of hepatocellular carcinoma (HCC). This study aimed to investigate whether BigV affects the development of HCC by targeting the MAPT and Fas/FasL pathway. Human HCC cell lines HepG2 and SMMC-7721 were used for this study. Cells were treated with BigV, sh-MAPT, and MAPT. The viability, migration, and apoptosis of HCC cells were detected by CCK-8, Transwell, and flow cytometry assays, respectively. Immunofluorescence and immunoprecipitation were used to verify the relationship between MAPT and Fas. Subcutaneous xenograft tumor and tail vein-injected lung metastases mouse models were constructed for histological observation. Hematoxylin-eosin staining was used to assess lung metastases in HCC. Western blotting was used to measure the expression of migration, apoptosis, and epithelial-mesenchymal transition (EMT) marker proteins, as well as Fas/FasL pathway-related proteins. BigV treatment inhibited the proliferation, migration, and EMT of HCC cells, whereas enhanced cell apoptosis. Moreover, BigV downregulated MAPT expression. The negative effects of sh-MAPT on HCC cell proliferation, migration, and EMT were enhanced by BigV treatment. Conversely, BigV addition attenuated the positive effects of MAPT overexpression on the malignant progression of HCC. In vivo experiments showed that BigV and/or sh-MAPT reduced tumor growth and lung metastasis while promoting tumor cell apoptosis. Furthermore, MAPT could act with Fas and inhibit its expression. sh-MAPT upregulated the expression of Fas/FasL pathway-associated proteins, which were enhanced by BigV administration. BigV suppressed the malignant progression of HCC via activating the MAPT-mediated Fas/FasL pathway.</p>","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bigelovin inhibits hepatocellular carcinoma cell growth and metastasis by regulating the MAPT-mediated Fas/FasL pathway.\",\"authors\":\"Bei Wang,&nbsp;Chun-Hui Nie,&nbsp;Jun Xu,&nbsp;Da-Long Wan,&nbsp;Xiao Xu,&nbsp;Jiang-Juan He\",\"doi\":\"10.4149/neo_2023_221125N1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bigelovin (BigV), as traditional Chinese medicine, has been shown to inhibit the malignant progression of hepatocellular carcinoma (HCC). This study aimed to investigate whether BigV affects the development of HCC by targeting the MAPT and Fas/FasL pathway. Human HCC cell lines HepG2 and SMMC-7721 were used for this study. Cells were treated with BigV, sh-MAPT, and MAPT. The viability, migration, and apoptosis of HCC cells were detected by CCK-8, Transwell, and flow cytometry assays, respectively. Immunofluorescence and immunoprecipitation were used to verify the relationship between MAPT and Fas. Subcutaneous xenograft tumor and tail vein-injected lung metastases mouse models were constructed for histological observation. Hematoxylin-eosin staining was used to assess lung metastases in HCC. Western blotting was used to measure the expression of migration, apoptosis, and epithelial-mesenchymal transition (EMT) marker proteins, as well as Fas/FasL pathway-related proteins. BigV treatment inhibited the proliferation, migration, and EMT of HCC cells, whereas enhanced cell apoptosis. Moreover, BigV downregulated MAPT expression. The negative effects of sh-MAPT on HCC cell proliferation, migration, and EMT were enhanced by BigV treatment. Conversely, BigV addition attenuated the positive effects of MAPT overexpression on the malignant progression of HCC. In vivo experiments showed that BigV and/or sh-MAPT reduced tumor growth and lung metastasis while promoting tumor cell apoptosis. Furthermore, MAPT could act with Fas and inhibit its expression. sh-MAPT upregulated the expression of Fas/FasL pathway-associated proteins, which were enhanced by BigV administration. BigV suppressed the malignant progression of HCC via activating the MAPT-mediated Fas/FasL pathway.</p>\",\"PeriodicalId\":19266,\"journal\":{\"name\":\"Neoplasma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4149/neo_2023_221125N1132\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2023_221125N1132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

Bigelovin (BigV)作为中药,已被证明具有抑制肝细胞癌(HCC)恶性进展的作用。本研究旨在探讨BigV是否通过靶向MAPT和Fas/FasL通路影响HCC的发展。本研究使用人肝癌细胞系HepG2和SMMC-7721。用BigV、sh-MAPT和MAPT处理细胞。采用CCK-8、Transwell和流式细胞术检测肝癌细胞的活力、迁移和凋亡情况。采用免疫荧光法和免疫沉淀法验证MAPT与Fas的关系。建立皮下移植瘤和尾静脉注射肺转移瘤小鼠模型进行组织学观察。苏木精-伊红染色用于评估肝细胞癌的肺转移。Western blotting检测迁移、凋亡、上皮-间质转化(epithelial-mesenchymal transition, EMT)标记蛋白以及Fas/FasL通路相关蛋白的表达。BigV处理抑制HCC细胞的增殖、迁移和EMT,而增强细胞凋亡。此外,BigV下调MAPT的表达。sh-MAPT对HCC细胞增殖、迁移和EMT的负面影响在BigV处理下增强。相反,添加BigV会减弱MAPT过表达对HCC恶性进展的积极作用。体内实验表明,BigV和/或sh-MAPT抑制肿瘤生长和肺转移,同时促进肿瘤细胞凋亡。此外,MAPT可以与Fas共同作用,抑制Fas的表达。sh-MAPT上调Fas/FasL通路相关蛋白的表达,BigV给药增强了Fas/FasL通路相关蛋白的表达。BigV通过激活mapt介导的Fas/FasL通路抑制HCC的恶性进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bigelovin inhibits hepatocellular carcinoma cell growth and metastasis by regulating the MAPT-mediated Fas/FasL pathway.

Bigelovin (BigV), as traditional Chinese medicine, has been shown to inhibit the malignant progression of hepatocellular carcinoma (HCC). This study aimed to investigate whether BigV affects the development of HCC by targeting the MAPT and Fas/FasL pathway. Human HCC cell lines HepG2 and SMMC-7721 were used for this study. Cells were treated with BigV, sh-MAPT, and MAPT. The viability, migration, and apoptosis of HCC cells were detected by CCK-8, Transwell, and flow cytometry assays, respectively. Immunofluorescence and immunoprecipitation were used to verify the relationship between MAPT and Fas. Subcutaneous xenograft tumor and tail vein-injected lung metastases mouse models were constructed for histological observation. Hematoxylin-eosin staining was used to assess lung metastases in HCC. Western blotting was used to measure the expression of migration, apoptosis, and epithelial-mesenchymal transition (EMT) marker proteins, as well as Fas/FasL pathway-related proteins. BigV treatment inhibited the proliferation, migration, and EMT of HCC cells, whereas enhanced cell apoptosis. Moreover, BigV downregulated MAPT expression. The negative effects of sh-MAPT on HCC cell proliferation, migration, and EMT were enhanced by BigV treatment. Conversely, BigV addition attenuated the positive effects of MAPT overexpression on the malignant progression of HCC. In vivo experiments showed that BigV and/or sh-MAPT reduced tumor growth and lung metastasis while promoting tumor cell apoptosis. Furthermore, MAPT could act with Fas and inhibit its expression. sh-MAPT upregulated the expression of Fas/FasL pathway-associated proteins, which were enhanced by BigV administration. BigV suppressed the malignant progression of HCC via activating the MAPT-mediated Fas/FasL pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neoplasma
Neoplasma 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
238
审稿时长
3 months
期刊介绍: The journal Neoplasma publishes articles on experimental and clinical oncology and cancer epidemiology.
期刊最新文献
A response to: Artificial immortalization, number of therapy lines, and survival of patients with advanced gastric and esophagogastric adenocarcinoma. Artificial immortalization, number of therapy lines, and survival of patients with advanced gastric and esophagogastric adenocarcinoma. Association between glutathione S-transferases M1 expression and treatment outcome in germ cell tumor patients. Fluspirilene exerts an anti-glioblastoma effect through suppression of the FOXM1-KIF20A axis. HER2 status results in an unstable switch from primary to recurrent breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1