基于超高效液相色谱-四极杆飞行时间质谱的三种不同亏虚模型大鼠肝脏代谢组学特征

H U Xingyao, Liu Hongning, Yan Xiaojun, Chen Zhong, F U Liu, Liu Ge, Chen Xuan, Shang Guangbin
{"title":"基于超高效液相色谱-四极杆飞行时间质谱的三种不同亏虚模型大鼠肝脏代谢组学特征","authors":"H U Xingyao,&nbsp;Liu Hongning,&nbsp;Yan Xiaojun,&nbsp;Chen Zhong,&nbsp;F U Liu,&nbsp;Liu Ge,&nbsp;Chen Xuan,&nbsp;Shang Guangbin","doi":"10.19852/j.cnki.jtcm.20230201.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the mechanism of deficiency syndrome (YDS) by analyzing the liver metabolomic characteristics of three different deficiency rat models METHODS: Following the TCM etiology, for clinical features and pathological manifestations of modern medicine, three kinds of animal models of deficiency were induced and replicated. Totally 48 Sprague-Dawley (SD) male rats were randomly divided into blank group, irritation induced model group, Fuzi-Ganjiang induced model group, and thyroxine-reserpine induced model group. After successful development of model, the ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was carried out to detect metabolites in each group. The metabolites of rat liver were analyzed for the characteristics of their biomarkers. The pathway enrichment analysis and metabolic network construction were performed through various online databases including Metabolite Biology Role, Human Metabolome Database, MetaboAnalyst, and Kyoto Encyclopedia of Genes and Genomes.</p><p><strong>Results: </strong>The SD rats in the experimental group showed symptoms like less weight gain, reduced diet and water intake, high body temperature, increased liver and kidney indexes, and abnormal liver and kidney tissue morphology. Moreover, the rats showed high increased levels of serum cyclic adenosine monophosphate, estradiol, alanine transaminase, and aspartate aminotransferase and decreased levels of cyclic guanosinc monophosphate and testosterone. We found four key interrelated metabolic pathways in the liver tissue metabolomics, including the biosynthesis of pantothenic acid and coenzyme A, and metabolism of alpha-linolenic acid metabolism, glycerophospholipid metabolism, and sphingolipid.</p><p><strong>Conclusion: </strong>The liver and kidney YDS is closely related to the biosynthesis of pantothenic acid and CoA and abnormal metabolism of α-linolenic acid, glycerophospholipid, and sphingolipid in SD rats.</p>","PeriodicalId":17450,"journal":{"name":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012192/pdf/JTCM-43-2-274.pdf","citationCount":"0","resultStr":"{\"title\":\"Liver metabolomic characteristics in three different rat models of deficiency based on ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.\",\"authors\":\"H U Xingyao,&nbsp;Liu Hongning,&nbsp;Yan Xiaojun,&nbsp;Chen Zhong,&nbsp;F U Liu,&nbsp;Liu Ge,&nbsp;Chen Xuan,&nbsp;Shang Guangbin\",\"doi\":\"10.19852/j.cnki.jtcm.20230201.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the mechanism of deficiency syndrome (YDS) by analyzing the liver metabolomic characteristics of three different deficiency rat models METHODS: Following the TCM etiology, for clinical features and pathological manifestations of modern medicine, three kinds of animal models of deficiency were induced and replicated. Totally 48 Sprague-Dawley (SD) male rats were randomly divided into blank group, irritation induced model group, Fuzi-Ganjiang induced model group, and thyroxine-reserpine induced model group. After successful development of model, the ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was carried out to detect metabolites in each group. The metabolites of rat liver were analyzed for the characteristics of their biomarkers. The pathway enrichment analysis and metabolic network construction were performed through various online databases including Metabolite Biology Role, Human Metabolome Database, MetaboAnalyst, and Kyoto Encyclopedia of Genes and Genomes.</p><p><strong>Results: </strong>The SD rats in the experimental group showed symptoms like less weight gain, reduced diet and water intake, high body temperature, increased liver and kidney indexes, and abnormal liver and kidney tissue morphology. Moreover, the rats showed high increased levels of serum cyclic adenosine monophosphate, estradiol, alanine transaminase, and aspartate aminotransferase and decreased levels of cyclic guanosinc monophosphate and testosterone. We found four key interrelated metabolic pathways in the liver tissue metabolomics, including the biosynthesis of pantothenic acid and coenzyme A, and metabolism of alpha-linolenic acid metabolism, glycerophospholipid metabolism, and sphingolipid.</p><p><strong>Conclusion: </strong>The liver and kidney YDS is closely related to the biosynthesis of pantothenic acid and CoA and abnormal metabolism of α-linolenic acid, glycerophospholipid, and sphingolipid in SD rats.</p>\",\"PeriodicalId\":17450,\"journal\":{\"name\":\"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012192/pdf/JTCM-43-2-274.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19852/j.cnki.jtcm.20230201.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19852/j.cnki.jtcm.20230201.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过分析3种不同虚证模型大鼠肝脏代谢组学特征,探讨虚证(YDS)形成的机制。方法:根据中医病因学,结合现代医学的临床特点和病理表现,建立3种虚证动物模型并进行复制。将48只SD雄性大鼠随机分为空白组、刺激模型组、扶子甘姜模型组和甲状腺素利血平模型组。模型建立成功后,采用超高效液相色谱-四极杆飞行时间质谱联用技术检测各组代谢产物。分析了大鼠肝脏代谢产物的生物标志物特征。通过Metabolite Biology Role、Human Metabolome Database、MetaboAnalyst和Kyoto Encyclopedia of Genes and Genomes等在线数据库进行通路富集分析和代谢网络构建。结果:实验组SD大鼠出现增重减少、饮食饮水减少、体温升高、肝肾指标升高、肝肾组织形态异常等症状。此外,大鼠血清环磷酸腺苷、雌二醇、丙氨酸转氨酶和天冬氨酸转氨酶水平升高,环磷酸鸟苷和睾酮水平降低。我们在肝组织代谢组学中发现了四个关键的相互关联的代谢途径,包括泛酸和辅酶A的生物合成,α -亚麻酸代谢,甘油磷脂代谢和鞘脂代谢。结论:SD大鼠肝肾YDS与泛酸、辅酶a的生物合成及α-亚麻酸、甘油磷脂、鞘脂代谢异常密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liver metabolomic characteristics in three different rat models of deficiency based on ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

Objective: To investigate the mechanism of deficiency syndrome (YDS) by analyzing the liver metabolomic characteristics of three different deficiency rat models METHODS: Following the TCM etiology, for clinical features and pathological manifestations of modern medicine, three kinds of animal models of deficiency were induced and replicated. Totally 48 Sprague-Dawley (SD) male rats were randomly divided into blank group, irritation induced model group, Fuzi-Ganjiang induced model group, and thyroxine-reserpine induced model group. After successful development of model, the ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was carried out to detect metabolites in each group. The metabolites of rat liver were analyzed for the characteristics of their biomarkers. The pathway enrichment analysis and metabolic network construction were performed through various online databases including Metabolite Biology Role, Human Metabolome Database, MetaboAnalyst, and Kyoto Encyclopedia of Genes and Genomes.

Results: The SD rats in the experimental group showed symptoms like less weight gain, reduced diet and water intake, high body temperature, increased liver and kidney indexes, and abnormal liver and kidney tissue morphology. Moreover, the rats showed high increased levels of serum cyclic adenosine monophosphate, estradiol, alanine transaminase, and aspartate aminotransferase and decreased levels of cyclic guanosinc monophosphate and testosterone. We found four key interrelated metabolic pathways in the liver tissue metabolomics, including the biosynthesis of pantothenic acid and coenzyme A, and metabolism of alpha-linolenic acid metabolism, glycerophospholipid metabolism, and sphingolipid.

Conclusion: The liver and kidney YDS is closely related to the biosynthesis of pantothenic acid and CoA and abnormal metabolism of α-linolenic acid, glycerophospholipid, and sphingolipid in SD rats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness and safety of Pingxiao capsule as adjuvant therapy in treatment of breast cancer: a systematic review and Meta-analysis. Zhenxin Anshen formula ameliorates atopic der-matitis-like skin dysfunction in mice and regulation of transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 in Neural pathways. Electroacupuncture stimulating Zhongji (CV3), Guanyuan (CV4), and bilateral Dahe (KI12) attenuates inflammation in rats with chronic nonbacterial prostatitis induced by estradiol through inhibiting toll-like receptor 4 pathway. Guilingji capsule for Alzheimer's disease: secondary analysis of a randomized non-inferiority controlled trial. Efficacy of catgut embedding in Baihui (GV20) and Feishu (BL13) and Pishu (BL20) on lung tissue, brain tissue and blood related indexes in rats with allergic rhinitis of lung deficiency type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1