Ting-Yu Dai, Praveen Radhakrishnan, Kingsley Nweye, Robert Estrada, Dev Niyogi, Zoltan Nagy
{"title":"分析新冠肺炎对德克萨斯州奥斯汀电力需求的影响,使用基于反事实和40万智能电表的整体模型。","authors":"Ting-Yu Dai, Praveen Radhakrishnan, Kingsley Nweye, Robert Estrada, Dev Niyogi, Zoltan Nagy","doi":"10.1007/s43762-023-00095-w","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic caused lifestyle changes and has led to the new electricity demand patterns in the presence of non-pharmaceutical interventions such as work-from-home policy and lockdown. Quantifying the effect on electricity demand is critical for future electricity market planning yet challenging in the context of limited smart metered buildings, which leads to limited understanding of the temporal and spatial variations in building energy use. This study uses a large scale private smart meter electricity demand data from the City of Austin, combined with publicly available environmental data, and develops an ensemble regression model for long term daily electricity demand prediction. Using 15-min resolution data from over 400,000 smart meters from 2018 to 2020 aggregated by building type and zip code, our proposed model precisely formalizes the counterfactual universe in the <i>without COVID-19</i> scenario. The model is used to understand building electricity demand changes during the pandemic and to identify relationships between such changes and socioeconomic patterns. Results indicate the increase in residential usage , demonstrating the spatial redistribution of energy consumption during the work-from-home period. Our experiments demonstrate the effectiveness of our proposed framework by assessing multiple socioeconomic impacts with the comparison between the counterfactual universe and observations.</p>","PeriodicalId":72667,"journal":{"name":"Computational urban science","volume":"3 1","pages":"20"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162906/pdf/","citationCount":"3","resultStr":"{\"title\":\"Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters.\",\"authors\":\"Ting-Yu Dai, Praveen Radhakrishnan, Kingsley Nweye, Robert Estrada, Dev Niyogi, Zoltan Nagy\",\"doi\":\"10.1007/s43762-023-00095-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic caused lifestyle changes and has led to the new electricity demand patterns in the presence of non-pharmaceutical interventions such as work-from-home policy and lockdown. Quantifying the effect on electricity demand is critical for future electricity market planning yet challenging in the context of limited smart metered buildings, which leads to limited understanding of the temporal and spatial variations in building energy use. This study uses a large scale private smart meter electricity demand data from the City of Austin, combined with publicly available environmental data, and develops an ensemble regression model for long term daily electricity demand prediction. Using 15-min resolution data from over 400,000 smart meters from 2018 to 2020 aggregated by building type and zip code, our proposed model precisely formalizes the counterfactual universe in the <i>without COVID-19</i> scenario. The model is used to understand building electricity demand changes during the pandemic and to identify relationships between such changes and socioeconomic patterns. Results indicate the increase in residential usage , demonstrating the spatial redistribution of energy consumption during the work-from-home period. Our experiments demonstrate the effectiveness of our proposed framework by assessing multiple socioeconomic impacts with the comparison between the counterfactual universe and observations.</p>\",\"PeriodicalId\":72667,\"journal\":{\"name\":\"Computational urban science\",\"volume\":\"3 1\",\"pages\":\"20\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162906/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational urban science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43762-023-00095-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational urban science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43762-023-00095-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters.
The COVID-19 pandemic caused lifestyle changes and has led to the new electricity demand patterns in the presence of non-pharmaceutical interventions such as work-from-home policy and lockdown. Quantifying the effect on electricity demand is critical for future electricity market planning yet challenging in the context of limited smart metered buildings, which leads to limited understanding of the temporal and spatial variations in building energy use. This study uses a large scale private smart meter electricity demand data from the City of Austin, combined with publicly available environmental data, and develops an ensemble regression model for long term daily electricity demand prediction. Using 15-min resolution data from over 400,000 smart meters from 2018 to 2020 aggregated by building type and zip code, our proposed model precisely formalizes the counterfactual universe in the without COVID-19 scenario. The model is used to understand building electricity demand changes during the pandemic and to identify relationships between such changes and socioeconomic patterns. Results indicate the increase in residential usage , demonstrating the spatial redistribution of energy consumption during the work-from-home period. Our experiments demonstrate the effectiveness of our proposed framework by assessing multiple socioeconomic impacts with the comparison between the counterfactual universe and observations.