José Clelto Barros Gomes, Reiko Aoki, Victor Hugo Lachos, Gilberto Alvarenga Paula, Cibele Maria Russo
{"title":"鲁棒非线性混合效应模型的快速推理。","authors":"José Clelto Barros Gomes, Reiko Aoki, Victor Hugo Lachos, Gilberto Alvarenga Paula, Cibele Maria Russo","doi":"10.1080/02664763.2022.2034141","DOIUrl":null,"url":null,"abstract":"<p><p>The interest for nonlinear mixed-effects models comes from application areas as pharmacokinetics, growth curves and HIV viral dynamics. However, the modeling procedure usually leads to many difficulties, as the inclusion of random effects, the estimation process and the model sensitivity to atypical or nonnormal data. The scale mixture of normal distributions include heavy-tailed models, as the Student-<i>t</i>, slash and contaminated normal distributions, and provide competitive alternatives to the usual models, enabling the obtention of robust estimates against outlying observations. Our proposal is to compare two estimation methods in nonlinear mixed-effects models where the random components follow a multivariate scale mixture of normal distributions. For this purpose, a Monte Carlo expectation-maximization algorithm (MCEM) and an efficient likelihood-based approximate method are developed. Results show that the approximate method is much faster and enables a fairly efficient likelihood maximization, although a slightly larger bias may be produced, especially for the fixed-effects parameters. A discussion on the robustness aspects of the proposed models are also provided. Two real nonlinear applications are discussed and a brief simulation study is presented.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"50 7","pages":"1568-1591"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184608/pdf/CJAS_50_2034141.pdf","citationCount":"1","resultStr":"{\"title\":\"Fast inference for robust nonlinear mixed-effects models.\",\"authors\":\"José Clelto Barros Gomes, Reiko Aoki, Victor Hugo Lachos, Gilberto Alvarenga Paula, Cibele Maria Russo\",\"doi\":\"10.1080/02664763.2022.2034141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interest for nonlinear mixed-effects models comes from application areas as pharmacokinetics, growth curves and HIV viral dynamics. However, the modeling procedure usually leads to many difficulties, as the inclusion of random effects, the estimation process and the model sensitivity to atypical or nonnormal data. The scale mixture of normal distributions include heavy-tailed models, as the Student-<i>t</i>, slash and contaminated normal distributions, and provide competitive alternatives to the usual models, enabling the obtention of robust estimates against outlying observations. Our proposal is to compare two estimation methods in nonlinear mixed-effects models where the random components follow a multivariate scale mixture of normal distributions. For this purpose, a Monte Carlo expectation-maximization algorithm (MCEM) and an efficient likelihood-based approximate method are developed. Results show that the approximate method is much faster and enables a fairly efficient likelihood maximization, although a slightly larger bias may be produced, especially for the fixed-effects parameters. A discussion on the robustness aspects of the proposed models are also provided. Two real nonlinear applications are discussed and a brief simulation study is presented.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"50 7\",\"pages\":\"1568-1591\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184608/pdf/CJAS_50_2034141.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2022.2034141\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2022.2034141","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Fast inference for robust nonlinear mixed-effects models.
The interest for nonlinear mixed-effects models comes from application areas as pharmacokinetics, growth curves and HIV viral dynamics. However, the modeling procedure usually leads to many difficulties, as the inclusion of random effects, the estimation process and the model sensitivity to atypical or nonnormal data. The scale mixture of normal distributions include heavy-tailed models, as the Student-t, slash and contaminated normal distributions, and provide competitive alternatives to the usual models, enabling the obtention of robust estimates against outlying observations. Our proposal is to compare two estimation methods in nonlinear mixed-effects models where the random components follow a multivariate scale mixture of normal distributions. For this purpose, a Monte Carlo expectation-maximization algorithm (MCEM) and an efficient likelihood-based approximate method are developed. Results show that the approximate method is much faster and enables a fairly efficient likelihood maximization, although a slightly larger bias may be produced, especially for the fixed-effects parameters. A discussion on the robustness aspects of the proposed models are also provided. Two real nonlinear applications are discussed and a brief simulation study is presented.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.