Qihao Wang , Guomin Wu , Linhai Fu , Zhupeng Li , Yuanlin Wu , Ting Zhu , Guangmao Yu
{"title":"HMMR在肺腺癌中的促瘤作用","authors":"Qihao Wang , Guomin Wu , Linhai Fu , Zhupeng Li , Yuanlin Wu , Ting Zhu , Guangmao Yu","doi":"10.1016/j.mrfmmm.2022.111811","DOIUrl":null,"url":null,"abstract":"<div><p>Searching for differential genes in lung adenocarcinoma<span> (LUAD) is vital for research. Hyaluronan<span><span> mediated motility receptor (HMMR) promotes malignant progression of cancer patients. However, the molecular regulators of HMMR-mediated LUAD onset are unknown. This work aimed to study the relevance of HMMR to proliferation, migration and invasion of LUAD cells. Let-7c-5p and HMMR levels in LUAD cells and HLF-a cells were assessed, and their correlation was also detected. Their interaction was determined by dual-luciferase experiments and qRT-PCR. Cell proliferation, migration and invasion potentials in vitro were validated through cell counting kit-8 (CCK-8), colony formation, scratch healing, and transwell assays. The expression of HMMR was examined by qRT-PCR and </span>western blot and the expression of let-7c-5p was assayed by qRT-PCR. It was found that HMMR level was increased in LUAD and negatively correlated with let-7c-5p level. Let-7c-5p directly targeted HMMR to repress LUAD cell proliferation, migration and invasion. The above data illustrated that the let-7c-5p/HMMR axis may provide certain therapeutic value for LUAD patients.</span></span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"826 ","pages":"Article 111811"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tumor-promoting roles of HMMR in lung adenocarcinoma\",\"authors\":\"Qihao Wang , Guomin Wu , Linhai Fu , Zhupeng Li , Yuanlin Wu , Ting Zhu , Guangmao Yu\",\"doi\":\"10.1016/j.mrfmmm.2022.111811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Searching for differential genes in lung adenocarcinoma<span> (LUAD) is vital for research. Hyaluronan<span><span> mediated motility receptor (HMMR) promotes malignant progression of cancer patients. However, the molecular regulators of HMMR-mediated LUAD onset are unknown. This work aimed to study the relevance of HMMR to proliferation, migration and invasion of LUAD cells. Let-7c-5p and HMMR levels in LUAD cells and HLF-a cells were assessed, and their correlation was also detected. Their interaction was determined by dual-luciferase experiments and qRT-PCR. Cell proliferation, migration and invasion potentials in vitro were validated through cell counting kit-8 (CCK-8), colony formation, scratch healing, and transwell assays. The expression of HMMR was examined by qRT-PCR and </span>western blot and the expression of let-7c-5p was assayed by qRT-PCR. It was found that HMMR level was increased in LUAD and negatively correlated with let-7c-5p level. Let-7c-5p directly targeted HMMR to repress LUAD cell proliferation, migration and invasion. The above data illustrated that the let-7c-5p/HMMR axis may provide certain therapeutic value for LUAD patients.</span></span></p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"826 \",\"pages\":\"Article 111811\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510722000380\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510722000380","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Tumor-promoting roles of HMMR in lung adenocarcinoma
Searching for differential genes in lung adenocarcinoma (LUAD) is vital for research. Hyaluronan mediated motility receptor (HMMR) promotes malignant progression of cancer patients. However, the molecular regulators of HMMR-mediated LUAD onset are unknown. This work aimed to study the relevance of HMMR to proliferation, migration and invasion of LUAD cells. Let-7c-5p and HMMR levels in LUAD cells and HLF-a cells were assessed, and their correlation was also detected. Their interaction was determined by dual-luciferase experiments and qRT-PCR. Cell proliferation, migration and invasion potentials in vitro were validated through cell counting kit-8 (CCK-8), colony formation, scratch healing, and transwell assays. The expression of HMMR was examined by qRT-PCR and western blot and the expression of let-7c-5p was assayed by qRT-PCR. It was found that HMMR level was increased in LUAD and negatively correlated with let-7c-5p level. Let-7c-5p directly targeted HMMR to repress LUAD cell proliferation, migration and invasion. The above data illustrated that the let-7c-5p/HMMR axis may provide certain therapeutic value for LUAD patients.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.