{"title":"EM算法的遗留问题","authors":"Kenneth Lange, Hua Zhou","doi":"10.1111/insr.12526","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nan Laird has an enormous and growing impact on computational statistics. Her paper with Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this brief survey, we revisit the derivation of some of her most useful algorithms from the perspective of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts to the construction of surrogate functions via standard mathematical inequalities. The MM principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster rate of convergence. In any case, the MM principle enriches our understanding of the EM principle and suggests new algorithms of considerable potential in high-dimensional settings where standard algorithms such as Newton's method and Fisher scoring falter.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Legacy of EM Algorithms\",\"authors\":\"Kenneth Lange, Hua Zhou\",\"doi\":\"10.1111/insr.12526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Nan Laird has an enormous and growing impact on computational statistics. Her paper with Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this brief survey, we revisit the derivation of some of her most useful algorithms from the perspective of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts to the construction of surrogate functions via standard mathematical inequalities. The MM principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster rate of convergence. In any case, the MM principle enriches our understanding of the EM principle and suggests new algorithms of considerable potential in high-dimensional settings where standard algorithms such as Newton's method and Fisher scoring falter.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12526\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12526","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
Nan Laird对计算统计学有着巨大且日益增长的影响。她与Dempster和Rubin合著的关于期望最大化(EM)算法的论文是统计学中被引用次数第二多的论文。她关于纵向建模的论文和书几乎同样令人印象深刻。在这个简短的调查中,我们从少数最大化(MM)原则的角度重新审视了她的一些最有用的算法的推导。MM原则概括了EM原则,并将其从缺失数据和条件预期的束缚中解放出来。相反,重点转移到通过标准数学不等式构造代理函数。MM原理可以提供更少麻烦的经典EM算法或具有更快收敛速度的全新算法。无论如何,MM原则丰富了我们对EM原则的理解,并提出了在高维环境中具有相当潜力的新算法,而牛顿方法和费舍尔评分等标准算法则会动摇。
Nan Laird has an enormous and growing impact on computational statistics. Her paper with Dempster and Rubin on the expectation-maximisation (EM) algorithm is the second most cited paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this brief survey, we revisit the derivation of some of her most useful algorithms from the perspective of the minorisation-maximisation (MM) principle. The MM principle generalises the EM principle and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts to the construction of surrogate functions via standard mathematical inequalities. The MM principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster rate of convergence. In any case, the MM principle enriches our understanding of the EM principle and suggests new algorithms of considerable potential in high-dimensional settings where standard algorithms such as Newton's method and Fisher scoring falter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.