{"title":"2022 年获批新药的结构-性质关系报告。","authors":"Kihang Choi","doi":"10.2174/1389557523666230519162803","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies.</p><p><strong>Method: </strong>Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development.</p><p><strong>Results: </strong>The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties.</p><p><strong>Conclusion: </strong>The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":"330-340"},"PeriodicalIF":3.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-property Relationships Reported for the New Drugs Approved in 2022.\",\"authors\":\"Kihang Choi\",\"doi\":\"10.2174/1389557523666230519162803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies.</p><p><strong>Method: </strong>Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development.</p><p><strong>Results: </strong>The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties.</p><p><strong>Conclusion: </strong>The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.</p>\",\"PeriodicalId\":18548,\"journal\":{\"name\":\"Mini reviews in medicinal chemistry\",\"volume\":\" \",\"pages\":\"330-340\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini reviews in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1389557523666230519162803\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389557523666230519162803","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Structure-property Relationships Reported for the New Drugs Approved in 2022.
Background: The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies.
Method: Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development.
Results: The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties.
Conclusion: The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.