Mustafa Gheni Taher, Mazin Razooqi Mohammed, Muthanna Abdulkhader Salh Al-Mahdawi, Noor Kareem Assi Halaf, Abduladheem Turki Jalil, Tahani Alsandook
{"title":"蛋白激酶在糖尿病神经性疼痛中的作用:最新综述。","authors":"Mustafa Gheni Taher, Mazin Razooqi Mohammed, Muthanna Abdulkhader Salh Al-Mahdawi, Noor Kareem Assi Halaf, Abduladheem Turki Jalil, Tahani Alsandook","doi":"10.1007/s40200-023-01217-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Diabetic neuropathic pain (DNP) is a debilitating symptom of diabetic neuropathy which seriously impairs patient's quality of life. Currently, there is no specific therapy for DNP except for duloxetine and gabapentin that show limited utility in alleviating DNP. The present review aims to discuss the central role of protein kinases in the pathogenesis of DNP and their therapeutic modulation.</p><p><strong>Methods: </strong>Scopus, PubMed, and Google scholar were searched up to January 2022 to find relevant studies with English language in which the roles of proteins kinases in DNP were examined.</p><p><strong>Results: </strong>DNP is associated with hyperactivity in pain sensory neurons and therapies aim to specifically suppress redundant discharges in these neurons without affecting the activity of other sensory and motor neurons. Transient receptor potential vanilloid 1 (TRPV1) and purinergic 2 × 7 receptors (P2 × 7R) are two receptor channels, highly expressed in pain sensory neurons and their blockade produces remarkable analgesic effects in DNP. The activities of receptor channels are mainly regulated by the protein kinases whose modulation provides remarkable analgesic effects in DNP models.</p><p><strong>Conclusion: </strong>Capsaicin, TRPV1 modulator, is the only agent successfully examined in clinical trials with promising effects in patients with DNP. Current data suggest that blocking calcium calmodulin dependent protein kinase II (CaMKII) is superior to other approaches, considering its pivotal role in regulating the pain neuron potentials. By this means, DNP alleviation is achievable without affecting the activity of other sensory or motor neurons.</p>","PeriodicalId":15635,"journal":{"name":"Journal of Diabetes and Metabolic Disorders","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225446/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of protein kinases in diabetic neuropathic pain: an update review.\",\"authors\":\"Mustafa Gheni Taher, Mazin Razooqi Mohammed, Muthanna Abdulkhader Salh Al-Mahdawi, Noor Kareem Assi Halaf, Abduladheem Turki Jalil, Tahani Alsandook\",\"doi\":\"10.1007/s40200-023-01217-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Diabetic neuropathic pain (DNP) is a debilitating symptom of diabetic neuropathy which seriously impairs patient's quality of life. Currently, there is no specific therapy for DNP except for duloxetine and gabapentin that show limited utility in alleviating DNP. The present review aims to discuss the central role of protein kinases in the pathogenesis of DNP and their therapeutic modulation.</p><p><strong>Methods: </strong>Scopus, PubMed, and Google scholar were searched up to January 2022 to find relevant studies with English language in which the roles of proteins kinases in DNP were examined.</p><p><strong>Results: </strong>DNP is associated with hyperactivity in pain sensory neurons and therapies aim to specifically suppress redundant discharges in these neurons without affecting the activity of other sensory and motor neurons. Transient receptor potential vanilloid 1 (TRPV1) and purinergic 2 × 7 receptors (P2 × 7R) are two receptor channels, highly expressed in pain sensory neurons and their blockade produces remarkable analgesic effects in DNP. The activities of receptor channels are mainly regulated by the protein kinases whose modulation provides remarkable analgesic effects in DNP models.</p><p><strong>Conclusion: </strong>Capsaicin, TRPV1 modulator, is the only agent successfully examined in clinical trials with promising effects in patients with DNP. Current data suggest that blocking calcium calmodulin dependent protein kinase II (CaMKII) is superior to other approaches, considering its pivotal role in regulating the pain neuron potentials. By this means, DNP alleviation is achievable without affecting the activity of other sensory or motor neurons.</p>\",\"PeriodicalId\":15635,\"journal\":{\"name\":\"Journal of Diabetes and Metabolic Disorders\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes and Metabolic Disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40200-023-01217-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes and Metabolic Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40200-023-01217-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The role of protein kinases in diabetic neuropathic pain: an update review.
Objectives: Diabetic neuropathic pain (DNP) is a debilitating symptom of diabetic neuropathy which seriously impairs patient's quality of life. Currently, there is no specific therapy for DNP except for duloxetine and gabapentin that show limited utility in alleviating DNP. The present review aims to discuss the central role of protein kinases in the pathogenesis of DNP and their therapeutic modulation.
Methods: Scopus, PubMed, and Google scholar were searched up to January 2022 to find relevant studies with English language in which the roles of proteins kinases in DNP were examined.
Results: DNP is associated with hyperactivity in pain sensory neurons and therapies aim to specifically suppress redundant discharges in these neurons without affecting the activity of other sensory and motor neurons. Transient receptor potential vanilloid 1 (TRPV1) and purinergic 2 × 7 receptors (P2 × 7R) are two receptor channels, highly expressed in pain sensory neurons and their blockade produces remarkable analgesic effects in DNP. The activities of receptor channels are mainly regulated by the protein kinases whose modulation provides remarkable analgesic effects in DNP models.
Conclusion: Capsaicin, TRPV1 modulator, is the only agent successfully examined in clinical trials with promising effects in patients with DNP. Current data suggest that blocking calcium calmodulin dependent protein kinase II (CaMKII) is superior to other approaches, considering its pivotal role in regulating the pain neuron potentials. By this means, DNP alleviation is achievable without affecting the activity of other sensory or motor neurons.
期刊介绍:
Journal of Diabetes & Metabolic Disorders is a peer reviewed journal which publishes original clinical and translational articles and reviews in the field of endocrinology and provides a forum of debate of the highest quality on these issues. Topics of interest include, but are not limited to, diabetes, lipid disorders, metabolic disorders, osteoporosis, interdisciplinary practices in endocrinology, cardiovascular and metabolic risk, aging research, obesity, traditional medicine, pychosomatic research, behavioral medicine, ethics and evidence-based practices.As of Jan 2018 the journal is published by Springer as a hybrid journal with no article processing charges. All articles published before 2018 are available free of charge on springerlink.Unofficial 2017 2-year Impact Factor: 1.816.