{"title":"改进的局部描述符(ILD):一种新的人脸识别融合方法。","authors":"Shekhar Karanwal","doi":"10.1007/s41870-023-01245-3","DOIUrl":null,"url":null,"abstract":"<p><p>Literature suggests that by fusing multiple features there is immense improvement in the recognition rates as compared to the recognition rates of single descriptor. This motivate researchers to develop more and more fused descriptors by joining multiple features. Inspiring from the literature work, the proposed work launch novel local descriptor so-called Improved Local Descriptor (ILD), by joining features of 4 local descriptors. These are LBP, ELBP, MBP and LPQ. LBP captures local details. ELBP capture robust features in horizontal and vertical directions (elliptically) by using 3 × 5 and 5 × 3 patches. MBP minimizes image noise by median comparison to all the pixels and LPQ quantize the frequency components for obtaining feature size. These essential merits of 4 descriptors are encapsulated in one framework in the form of histogram feature. PCA is used further for compression and SVMs and NN are used for classification. Results on ORL, GT and Faces94 confirms strength of ILD, which beats separately implemented descriptors and various benchmark methods.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":"15 4","pages":"1885-1894"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improved local descriptor (ILD): a novel fusion method in face recognition.\",\"authors\":\"Shekhar Karanwal\",\"doi\":\"10.1007/s41870-023-01245-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Literature suggests that by fusing multiple features there is immense improvement in the recognition rates as compared to the recognition rates of single descriptor. This motivate researchers to develop more and more fused descriptors by joining multiple features. Inspiring from the literature work, the proposed work launch novel local descriptor so-called Improved Local Descriptor (ILD), by joining features of 4 local descriptors. These are LBP, ELBP, MBP and LPQ. LBP captures local details. ELBP capture robust features in horizontal and vertical directions (elliptically) by using 3 × 5 and 5 × 3 patches. MBP minimizes image noise by median comparison to all the pixels and LPQ quantize the frequency components for obtaining feature size. These essential merits of 4 descriptors are encapsulated in one framework in the form of histogram feature. PCA is used further for compression and SVMs and NN are used for classification. Results on ORL, GT and Faces94 confirms strength of ILD, which beats separately implemented descriptors and various benchmark methods.</p>\",\"PeriodicalId\":73455,\"journal\":{\"name\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"volume\":\"15 4\",\"pages\":\"1885-1894\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-023-01245-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-023-01245-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Improved local descriptor (ILD): a novel fusion method in face recognition.
Literature suggests that by fusing multiple features there is immense improvement in the recognition rates as compared to the recognition rates of single descriptor. This motivate researchers to develop more and more fused descriptors by joining multiple features. Inspiring from the literature work, the proposed work launch novel local descriptor so-called Improved Local Descriptor (ILD), by joining features of 4 local descriptors. These are LBP, ELBP, MBP and LPQ. LBP captures local details. ELBP capture robust features in horizontal and vertical directions (elliptically) by using 3 × 5 and 5 × 3 patches. MBP minimizes image noise by median comparison to all the pixels and LPQ quantize the frequency components for obtaining feature size. These essential merits of 4 descriptors are encapsulated in one framework in the form of histogram feature. PCA is used further for compression and SVMs and NN are used for classification. Results on ORL, GT and Faces94 confirms strength of ILD, which beats separately implemented descriptors and various benchmark methods.