单次布比卡因暴露对原生软骨外植体机械性能的长期影响

IF 2.7 4区 医学 Q1 ORTHOPEDICS CARTILAGE Pub Date : 2024-06-01 Epub Date: 2023-03-29 DOI:10.1177/19476035231164751
Kylie T Callan, Gaston Otarola, Wendy E Brown, Kyriacos A Athanasiou, Dean Wang
{"title":"单次布比卡因暴露对原生软骨外植体机械性能的长期影响","authors":"Kylie T Callan, Gaston Otarola, Wendy E Brown, Kyriacos A Athanasiou, Dean Wang","doi":"10.1177/19476035231164751","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to determine the <i>in vitro</i> effects of a single exposure of bupivacaine on the mechanical properties of bovine cartilage explants at 3 weeks.</p><p><strong>Design: </strong>Femoral condyle articular cartilage explants were aseptically harvested from juvenile bovine stifle joints before being exposed to chondrogenic medium containing 0.50% (wt/vol) bupivacaine, 0.25% (wt/vol) bupivacaine, or no medication (control) for 1 hour. Explants were then washed and maintained in culture <i>in vitro</i> for 3 weeks before testing. Cell viability, tensile and compressive mechanical properties, histological properties, and biochemical properties were then assessed.</p><p><strong>Results: </strong>Explants exhibited a dose-dependent decrease in mean tensile Young's modulus with increasing bupivacaine concentration (9.86 MPa in the controls, 6.48 MPa in the 0.25% bupivacaine group [<i>P</i> = 0.048], and 4.72 MPa in the 0.50% bupivacaine group [<i>P</i> = 0.005]). Consistent with these results, collagen content and collagen crosslinking decreased with bupivacaine exposure as measured by mass spectrometry. Compressive properties of the explants were unaffected by bupivacaine exposure. Explants also exhibited a trend toward dose-dependent decreases in viability (51.2% for the controls, 47.3% for the 0.25% bupivacaine-exposed group, and 37.0% for the 0.50% bupivacaine-exposed group [<i>P</i> = 0.072]).</p><p><strong>Conclusions: </strong>Three weeks after 1-hour bupivacaine exposure, the tensile properties of bovine cartilage explants were significantly decreased, while the compressive properties remained unaffected. These decreases in tensile properties corresponded with reductions in collagen content and crosslinking of collagen fibers. Physicians should be judicious regarding the intra-articular administration of bupivacaine in native joints.</p>","PeriodicalId":9626,"journal":{"name":"CARTILAGE","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368901/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Longer-Term Effects of a Single Bupivacaine Exposure on the Mechanical Properties of Native Cartilage Explants.\",\"authors\":\"Kylie T Callan, Gaston Otarola, Wendy E Brown, Kyriacos A Athanasiou, Dean Wang\",\"doi\":\"10.1177/19476035231164751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The purpose of this study was to determine the <i>in vitro</i> effects of a single exposure of bupivacaine on the mechanical properties of bovine cartilage explants at 3 weeks.</p><p><strong>Design: </strong>Femoral condyle articular cartilage explants were aseptically harvested from juvenile bovine stifle joints before being exposed to chondrogenic medium containing 0.50% (wt/vol) bupivacaine, 0.25% (wt/vol) bupivacaine, or no medication (control) for 1 hour. Explants were then washed and maintained in culture <i>in vitro</i> for 3 weeks before testing. Cell viability, tensile and compressive mechanical properties, histological properties, and biochemical properties were then assessed.</p><p><strong>Results: </strong>Explants exhibited a dose-dependent decrease in mean tensile Young's modulus with increasing bupivacaine concentration (9.86 MPa in the controls, 6.48 MPa in the 0.25% bupivacaine group [<i>P</i> = 0.048], and 4.72 MPa in the 0.50% bupivacaine group [<i>P</i> = 0.005]). Consistent with these results, collagen content and collagen crosslinking decreased with bupivacaine exposure as measured by mass spectrometry. Compressive properties of the explants were unaffected by bupivacaine exposure. Explants also exhibited a trend toward dose-dependent decreases in viability (51.2% for the controls, 47.3% for the 0.25% bupivacaine-exposed group, and 37.0% for the 0.50% bupivacaine-exposed group [<i>P</i> = 0.072]).</p><p><strong>Conclusions: </strong>Three weeks after 1-hour bupivacaine exposure, the tensile properties of bovine cartilage explants were significantly decreased, while the compressive properties remained unaffected. These decreases in tensile properties corresponded with reductions in collagen content and crosslinking of collagen fibers. Physicians should be judicious regarding the intra-articular administration of bupivacaine in native joints.</p>\",\"PeriodicalId\":9626,\"journal\":{\"name\":\"CARTILAGE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CARTILAGE\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19476035231164751\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CARTILAGE","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19476035231164751","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在确定体外暴露布比卡因 3 周后对牛软骨外植体机械性能的影响:从幼牛跗关节无菌采集股骨髁关节软骨外植体,然后将其暴露于含有0.50%(重量/体积)布比卡因、0.25%(重量/体积)布比卡因或不含药物(对照组)的软骨培养基中1小时。然后清洗外植体,并在测试前将其体外培养 3 周。然后评估细胞存活率、拉伸和压缩机械性能、组织学特性和生化特性:随着布比卡因浓度的增加,外植体的平均拉伸杨氏模量呈剂量依赖性下降(对照组为 9.86 MPa,0.25% 布比卡因组为 6.48 MPa [P = 0.048],0.50% 布比卡因组为 4.72 MPa [P = 0.005])。与这些结果一致的是,质谱法测定的胶原含量和胶原交联随着布比卡因暴露而减少。外植体的抗压性能不受布比卡因暴露的影响。外植体的存活率也呈剂量依赖性下降趋势(对照组为 51.2%,暴露于 0.25% 布比卡因组为 47.3%,暴露于 0.50% 布比卡因组为 37.0% [P = 0.072]):结论:布比卡因暴露1小时三周后,牛软骨外植体的拉伸性能显著下降,而压缩性能则不受影响。拉伸性能的下降与胶原蛋白含量和胶原纤维交联的减少相对应。医生在原生关节内使用布比卡因时应慎重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Longer-Term Effects of a Single Bupivacaine Exposure on the Mechanical Properties of Native Cartilage Explants.

Objective: The purpose of this study was to determine the in vitro effects of a single exposure of bupivacaine on the mechanical properties of bovine cartilage explants at 3 weeks.

Design: Femoral condyle articular cartilage explants were aseptically harvested from juvenile bovine stifle joints before being exposed to chondrogenic medium containing 0.50% (wt/vol) bupivacaine, 0.25% (wt/vol) bupivacaine, or no medication (control) for 1 hour. Explants were then washed and maintained in culture in vitro for 3 weeks before testing. Cell viability, tensile and compressive mechanical properties, histological properties, and biochemical properties were then assessed.

Results: Explants exhibited a dose-dependent decrease in mean tensile Young's modulus with increasing bupivacaine concentration (9.86 MPa in the controls, 6.48 MPa in the 0.25% bupivacaine group [P = 0.048], and 4.72 MPa in the 0.50% bupivacaine group [P = 0.005]). Consistent with these results, collagen content and collagen crosslinking decreased with bupivacaine exposure as measured by mass spectrometry. Compressive properties of the explants were unaffected by bupivacaine exposure. Explants also exhibited a trend toward dose-dependent decreases in viability (51.2% for the controls, 47.3% for the 0.25% bupivacaine-exposed group, and 37.0% for the 0.50% bupivacaine-exposed group [P = 0.072]).

Conclusions: Three weeks after 1-hour bupivacaine exposure, the tensile properties of bovine cartilage explants were significantly decreased, while the compressive properties remained unaffected. These decreases in tensile properties corresponded with reductions in collagen content and crosslinking of collagen fibers. Physicians should be judicious regarding the intra-articular administration of bupivacaine in native joints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CARTILAGE
CARTILAGE ORTHOPEDICS-
CiteScore
6.90
自引率
7.10%
发文量
80
期刊介绍: CARTILAGE publishes articles related to the musculoskeletal system with particular attention to cartilage repair, development, function, degeneration, transplantation, and rehabilitation. The journal is a forum for the exchange of ideas for the many types of researchers and clinicians involved in cartilage biology and repair. A primary objective of CARTILAGE is to foster the cross-fertilization of the findings between clinical and basic sciences throughout the various disciplines involved in cartilage repair. The journal publishes full length original manuscripts on all types of cartilage including articular, nasal, auricular, tracheal/bronchial, and intervertebral disc fibrocartilage. Manuscripts on clinical and laboratory research are welcome. Review articles, editorials, and letters are also encouraged. The ICRS envisages CARTILAGE as a forum for the exchange of knowledge among clinicians, scientists, patients, and researchers. The International Cartilage Repair Society (ICRS) is dedicated to promotion, encouragement, and distribution of fundamental and applied research of cartilage in order to permit a better knowledge of function and dysfunction of articular cartilage and its repair.
期刊最新文献
Il-1β Promotes Superficial Zone Cells Senescence in Articular Cartilage by Inhibiting Autophagy. Decreased Elastic Modulus of Knee Articular Cartilage Based on New Macroscopic Methods Accurately Represents Early Histological Findings of Degeneration. Aerobic and Resistance Training Attenuate Differently Knee Joint Damage Caused by a High-Fat-High-Sucrose Diet in a Rat Model. Low-Grade Inflammatory Mediators and Metalloproteinases Yield Synchronous and Delayed Responses to Mechanical Joint Loading. Upregulated Mitochondrial Dynamics Is Responsible for the Procatabolic Changes of Chondrocyte Induced by α2-Adrenergic Signal Activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1