曼氏血吸虫中编码通用应激蛋白的基因的发育调控

Gene regulation and systems biology Pub Date : 2011-01-01 Epub Date: 2011-09-19 DOI:10.4137/GRSB.S7491
Raphael D Isokpehi, Ousman Mahmud, Andreas N Mbah, Shaneka S Simmons, Lívia Avelar, Rajendram V Rajnarayanan, Udensi K Udensi, Wellington K Ayensu, Hari H Cohly, Shyretha D Brown, Centdrika R Dates, Sonya D Hentz, Shawntae J Hughes, Dominique R Smith-McInnis, Carvey O Patterson, Jennifer N Sims, Kelisha T Turner, Baraka S Williams, Matilda O Johnson, Taiwo Adubi, Judith V Mbuh, Chiaka I Anumudu, Grace O Adeoye, Bolaji N Thomas, Oyekanmi Nashiru, Guilherme Oliveira
{"title":"曼氏血吸虫中编码通用应激蛋白的基因的发育调控","authors":"Raphael D Isokpehi, Ousman Mahmud, Andreas N Mbah, Shaneka S Simmons, Lívia Avelar, Rajendram V Rajnarayanan, Udensi K Udensi, Wellington K Ayensu, Hari H Cohly, Shyretha D Brown, Centdrika R Dates, Sonya D Hentz, Shawntae J Hughes, Dominique R Smith-McInnis, Carvey O Patterson, Jennifer N Sims, Kelisha T Turner, Baraka S Williams, Matilda O Johnson, Taiwo Adubi, Judith V Mbuh, Chiaka I Anumudu, Grace O Adeoye, Bolaji N Thomas, Oyekanmi Nashiru, Guilherme Oliveira","doi":"10.4137/GRSB.S7491","DOIUrl":null,"url":null,"abstract":"<p><p>The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts.</p>","PeriodicalId":73138,"journal":{"name":"Gene regulation and systems biology","volume":"5 ","pages":"61-74"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni.\",\"authors\":\"Raphael D Isokpehi, Ousman Mahmud, Andreas N Mbah, Shaneka S Simmons, Lívia Avelar, Rajendram V Rajnarayanan, Udensi K Udensi, Wellington K Ayensu, Hari H Cohly, Shyretha D Brown, Centdrika R Dates, Sonya D Hentz, Shawntae J Hughes, Dominique R Smith-McInnis, Carvey O Patterson, Jennifer N Sims, Kelisha T Turner, Baraka S Williams, Matilda O Johnson, Taiwo Adubi, Judith V Mbuh, Chiaka I Anumudu, Grace O Adeoye, Bolaji N Thomas, Oyekanmi Nashiru, Guilherme Oliveira\",\"doi\":\"10.4137/GRSB.S7491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts.</p>\",\"PeriodicalId\":73138,\"journal\":{\"name\":\"Gene regulation and systems biology\",\"volume\":\"5 \",\"pages\":\"61-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene regulation and systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/GRSB.S7491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene regulation and systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/GRSB.S7491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

曼氏血吸虫(Schistosoma mansoni)是一种通过蜗牛传播的二形寄生虫,其核基因组序列草案揭示了八个编码含有通用应激蛋白(USP)结构域的蛋白质的基因。曼氏血吸虫是人类血吸虫病的病原体,这是一种严重的致残性贫困被忽视热带病(NTD),在至少 76 个国家流行。血吸虫基因组序列的获得为相关基因家族的生物信息学和基因组学分析提供了机会,这些基因家族可能成为了解血吸虫病生态学、干预、预防和控制的目标。众所周知,具有 USP 结构域的蛋白质使细菌、古菌、真菌、原生生物和植物能够应对各种环境压力。在这项研究调查中,首先验证了 USP 基因的功能注释以及预测的核苷酸和蛋白质序列。随后,确定了序列群和序列的显著特征。根据与詹纳氏甲烷球菌(Methanocaldococcus jannaschii)的 ATP 结合通用应激蛋白的比对,共预测出 12 个配体结合位点。此外,六个 USP 序列显示存在 ATP 结合基序残基,表明它们可能受 ATP 调节。公有领域的基因表达数据和 RT-PCR 检测证实,曼氏沙门氏菌的所有 USP 基因在该蠕虫的至少一个发育生命周期阶段都有转录。其中 6 个基因在蛛蚴期被上调,蛛蚴期是自由游动阶段,对于向蜗牛中间宿主的传播至关重要。可能在蜗牛体内阶段,曼氏蠕虫通用应激蛋白的基因转录本含量较低,在环境应激因素(如蜗牛血细胞中存在的过氧化氢导致的氧化应激)的诱导下,曼氏蠕虫通用应激蛋白的基因转录本发挥特殊功能。本报告有助于促进研究人员网络的形成,以了解血吸虫及其钉螺中间宿主基因组中编码的通用应激蛋白的功能和调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developmental Regulation of Genes Encoding Universal Stress Proteins in Schistosoma mansoni.

The draft nuclear genome sequence of the snail-transmitted, dimorphic, parasitic, platyhelminth Schistosoma mansoni revealed eight genes encoding proteins that contain the Universal Stress Protein (USP) domain. Schistosoma mansoni is a causative agent of human schistosomiasis, a severe and debilitating Neglected Tropical Disease (NTD) of poverty, which is endemic in at least 76 countries. The availability of the genome sequences of Schistosoma species presents opportunities for bioinformatics and genomics analyses of associated gene families that could be targets for understanding schistosomiasis ecology, intervention, prevention and control. Proteins with the USP domain are known to provide bacteria, archaea, fungi, protists and plants with the ability to respond to diverse environmental stresses. In this research investigation, the functional annotations of the USP genes and predicted nucleotide and protein sequences were initially verified. Subsequently, sequence clusters and distinctive features of the sequences were determined. A total of twelve ligand binding sites were predicted based on alignment to the ATP-binding universal stress protein from Methanocaldococcus jannaschii. In addition, six USP sequences showed the presence of ATP-binding motif residues indicating that they may be regulated by ATP. Public domain gene expression data and RT-PCR assays confirmed that all the S. mansoni USP genes were transcribed in at least one of the developmental life cycle stages of the helminth. Six of these genes were up-regulated in the miracidium, a free-swimming stage that is critical for transmission to the snail intermediate host. It is possible that during the intra-snail stages, S. mansoni gene transcripts for universal stress proteins are low abundant and are induced to perform specialized functions triggered by environmental stressors such as oxidative stress due to hydrogen peroxide that is present in the snail hemocytes. This report serves to catalyze the formation of a network of researchers to understand the function and regulation of the universal stress proteins encoded in genomes of schistosomes and their snail intermediate hosts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing. Temporal and Spatial Differential Expression of Glutamate Receptor Genes in the Brain of Down Syndrome Introductory Chapter: Gene Regulation, an RNA Network-Dependent Architecture Model-based Evaluation of Gene Expression Changes in Response to Leishmania Infection. Gene Activation by the Cytokine-Driven Transcription Factor STAT1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1