{"title":"气胚芽素在调节癌症进展中的热亡和非热亡作用及其在癌症治疗中的前景","authors":"Sheng-Kai Hsu, Yi-En Chen, En-De Shu, Ching-Chung Ko, Wen-Tsan Chang, I.-Ling Lin, Chia-Yang Li, Rovelyn P. Gallego, Chien-Chih Chiu","doi":"10.1007/s00005-023-00678-9","DOIUrl":null,"url":null,"abstract":"<div><p>Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including <i>GSDMA, GSDMB, GSDMC, GSDMD, GSDME</i> (also known as <i>DFNA5</i>), and <i>DFNB59</i> (also known as <i>pejvakin</i>). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"71 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Pyroptotic and Nonpyroptotic Roles of Gasdermins in Modulating Cancer Progression and Their Perspectives on Cancer Therapeutics\",\"authors\":\"Sheng-Kai Hsu, Yi-En Chen, En-De Shu, Ching-Chung Ko, Wen-Tsan Chang, I.-Ling Lin, Chia-Yang Li, Rovelyn P. Gallego, Chien-Chih Chiu\",\"doi\":\"10.1007/s00005-023-00678-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including <i>GSDMA, GSDMB, GSDMC, GSDMD, GSDME</i> (also known as <i>DFNA5</i>), and <i>DFNB59</i> (also known as <i>pejvakin</i>). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.</p></div>\",\"PeriodicalId\":8389,\"journal\":{\"name\":\"Archivum Immunologiae et Therapiae Experimentalis\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Immunologiae et Therapiae Experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00005-023-00678-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Immunologiae et Therapiae Experimentalis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00005-023-00678-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The Pyroptotic and Nonpyroptotic Roles of Gasdermins in Modulating Cancer Progression and Their Perspectives on Cancer Therapeutics
Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known as DFNA5), and DFNB59 (also known as pejvakin). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.
期刊介绍:
Archivum Immunologiae et Therapiae Experimentalis (AITE), founded in 1953 by Ludwik Hirszfeld, is a bimonthly, multidisciplinary journal. It publishes reviews and full original papers dealing with immunology, experimental therapy, immunogenetics, transplantation, microbiology, immunochemistry and ethics in science.