在胶原诱导的关节炎小鼠中,AKAP12的缺失会加重类风湿关节炎样症状和心脏损伤。

IF 2.2 4区 农林科学 Q1 VETERINARY SCIENCES Experimental Animals Pub Date : 2023-05-17 DOI:10.1538/expanim.22-0103
Yanhui Ni, Jingjing Cao, Jing Yuan, Xiaoran Ning
{"title":"在胶原诱导的关节炎小鼠中,AKAP12的缺失会加重类风湿关节炎样症状和心脏损伤。","authors":"Yanhui Ni,&nbsp;Jingjing Cao,&nbsp;Jing Yuan,&nbsp;Xiaoran Ning","doi":"10.1538/expanim.22-0103","DOIUrl":null,"url":null,"abstract":"<p><p>A-kinase anchoring protein 12 (AKAP12) has been identified as an anti-inflammatory and anti-fibrotic regulator in chronic inflammation and cardiovascular disease. However, the potential of AKAP12 in autoimmune disorders, rheumatoid arthritis (RA) and associated cardiac complications remains elusive. Here, a murine model of collagen-induced arthritis (CIA) was successfully induced, followed by adenovirus-mediated AKAP12 short hairpin RNA (shRNA) treatment. AKAP12 silenced mice displayed elevated clinical arthritis scores and significant ankle joint swelling. AKAP12 loss in CIA mice increased inflammatory cell infiltration and cartilage erosion, increased the levels of anti-IIC IgG and inflammatory cytokines IL-1β, IL-6, tumor necrosis factor (TNF)-α in serum, and upregulated the expression of cartilage-degrading enzymes MMP-1, MMP-3, MMP-13 in synovium, but reduced IL-10. The number of M1 macrophages and the expression of the markers (CCR7, IL-6, TNF-α and iNOS) was enhanced in synovial tissues, while M2 polarized macrophages and the makers (IL-10 and arginase-1) were reduced in response to AKAP12 loss. Moreover, low expression of AKAP12 was detected in the hearts of CIA mice. Loss of AKAP12 results in increased cardiac inflammation and fibrosis. This work suggests that AKAP12 loss aggravates joint inflammation likely through the promotion of M1 macrophage polarization and exacerbates inflammation-caused cardiac fibrosis.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/04/9d/expanim-72-242.PMC10202715.pdf","citationCount":"1","resultStr":"{\"title\":\"Loss of AKAP12 aggravates rheumatoid arthritis-like symptoms and cardiac damage in collagen-induced arthritis mice.\",\"authors\":\"Yanhui Ni,&nbsp;Jingjing Cao,&nbsp;Jing Yuan,&nbsp;Xiaoran Ning\",\"doi\":\"10.1538/expanim.22-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A-kinase anchoring protein 12 (AKAP12) has been identified as an anti-inflammatory and anti-fibrotic regulator in chronic inflammation and cardiovascular disease. However, the potential of AKAP12 in autoimmune disorders, rheumatoid arthritis (RA) and associated cardiac complications remains elusive. Here, a murine model of collagen-induced arthritis (CIA) was successfully induced, followed by adenovirus-mediated AKAP12 short hairpin RNA (shRNA) treatment. AKAP12 silenced mice displayed elevated clinical arthritis scores and significant ankle joint swelling. AKAP12 loss in CIA mice increased inflammatory cell infiltration and cartilage erosion, increased the levels of anti-IIC IgG and inflammatory cytokines IL-1β, IL-6, tumor necrosis factor (TNF)-α in serum, and upregulated the expression of cartilage-degrading enzymes MMP-1, MMP-3, MMP-13 in synovium, but reduced IL-10. The number of M1 macrophages and the expression of the markers (CCR7, IL-6, TNF-α and iNOS) was enhanced in synovial tissues, while M2 polarized macrophages and the makers (IL-10 and arginase-1) were reduced in response to AKAP12 loss. Moreover, low expression of AKAP12 was detected in the hearts of CIA mice. Loss of AKAP12 results in increased cardiac inflammation and fibrosis. This work suggests that AKAP12 loss aggravates joint inflammation likely through the promotion of M1 macrophage polarization and exacerbates inflammation-caused cardiac fibrosis.</p>\",\"PeriodicalId\":12102,\"journal\":{\"name\":\"Experimental Animals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/04/9d/expanim-72-242.PMC10202715.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Animals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.22-0103\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.22-0103","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

a激酶锚定蛋白12 (AKAP12)已被确定为慢性炎症和心血管疾病的抗炎和抗纤维化调节因子。然而,AKAP12在自身免疫性疾病、类风湿性关节炎(RA)和相关心脏并发症中的潜力仍然难以捉摸。本研究成功地诱导了小鼠胶原诱导关节炎(CIA)模型,随后进行腺病毒介导的AKAP12短发夹RNA (shRNA)处理。AKAP12沉默小鼠表现出临床关节炎评分升高和明显的踝关节肿胀。AKAP12缺失使CIA小鼠炎症细胞浸润和软骨侵蚀增加,血清中抗iic IgG和炎症因子IL-1β、IL-6、肿瘤坏死因子(TNF)-α水平升高,滑膜中软骨降解酶MMP-1、MMP-3、MMP-13表达上调,IL-10表达降低。在AKAP12缺失的情况下,滑膜组织中M1巨噬细胞的数量和标记物(CCR7、IL-6、TNF-α和iNOS)的表达增加,M2极化巨噬细胞和制造物(IL-10和精氨酸酶-1)的表达减少。此外,在CIA小鼠心脏中检测到AKAP12的低表达。AKAP12缺失导致心脏炎症和纤维化增加。本研究提示,AKAP12缺失可能通过促进M1巨噬细胞极化加重关节炎症,并加剧炎症引起的心脏纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loss of AKAP12 aggravates rheumatoid arthritis-like symptoms and cardiac damage in collagen-induced arthritis mice.

A-kinase anchoring protein 12 (AKAP12) has been identified as an anti-inflammatory and anti-fibrotic regulator in chronic inflammation and cardiovascular disease. However, the potential of AKAP12 in autoimmune disorders, rheumatoid arthritis (RA) and associated cardiac complications remains elusive. Here, a murine model of collagen-induced arthritis (CIA) was successfully induced, followed by adenovirus-mediated AKAP12 short hairpin RNA (shRNA) treatment. AKAP12 silenced mice displayed elevated clinical arthritis scores and significant ankle joint swelling. AKAP12 loss in CIA mice increased inflammatory cell infiltration and cartilage erosion, increased the levels of anti-IIC IgG and inflammatory cytokines IL-1β, IL-6, tumor necrosis factor (TNF)-α in serum, and upregulated the expression of cartilage-degrading enzymes MMP-1, MMP-3, MMP-13 in synovium, but reduced IL-10. The number of M1 macrophages and the expression of the markers (CCR7, IL-6, TNF-α and iNOS) was enhanced in synovial tissues, while M2 polarized macrophages and the makers (IL-10 and arginase-1) were reduced in response to AKAP12 loss. Moreover, low expression of AKAP12 was detected in the hearts of CIA mice. Loss of AKAP12 results in increased cardiac inflammation and fibrosis. This work suggests that AKAP12 loss aggravates joint inflammation likely through the promotion of M1 macrophage polarization and exacerbates inflammation-caused cardiac fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Animals
Experimental Animals 生物-动物学
CiteScore
2.80
自引率
4.20%
发文量
2
审稿时长
3 months
期刊介绍: The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.
期刊最新文献
Identification of gene mutations associated with the phenotype of short-limb mice emerging from a foundation colony of severely immunodeficient mice. Melinjo (Gnetum gnemon L.) seed extract for treatment of sleep/wake fragmentation in diet-induced obese mice. Endothelial GATA3 is involved in coagulofibrinolytic homeostasis during endotoxin sepsis. The Chinese hamster as an excellent experimental animal model. Optimization of inhaled anesthesia for Octodon degus using electroencephalography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1