星形胶质细胞相关纤维连接蛋白通过β1整合素激活促进星形胶质细胞的促炎表型

IF 2.6 3区 医学 Q3 NEUROSCIENCES Molecular and Cellular Neuroscience Pub Date : 2023-06-01 DOI:10.1016/j.mcn.2023.103848
Pao-Hsien Chu , Shao-Chi Chen , Hsin-Yung Chen , Cheng-Bei Wu , Wei-Ting Huang , Hou-Yu Chiang
{"title":"星形胶质细胞相关纤维连接蛋白通过β1整合素激活促进星形胶质细胞的促炎表型","authors":"Pao-Hsien Chu ,&nbsp;Shao-Chi Chen ,&nbsp;Hsin-Yung Chen ,&nbsp;Cheng-Bei Wu ,&nbsp;Wei-Ting Huang ,&nbsp;Hou-Yu Chiang","doi":"10.1016/j.mcn.2023.103848","DOIUrl":null,"url":null,"abstract":"<div><p><span>Astrocytes are key players in neuroinflammation. In response to central nervous system<span><span> (CNS) injury or disease, astrocytes undergo reactive astrogliosis<span>, which is characterized by increased proliferation, migration, and glial fibrillary acidic protein<span> (GFAP) expression. Activation of the transcription factor nuclear factor-κB (NF-κB) and upregulation of downstream proinflammatory mediators in reactive astrocytes induce a proinflammatory phenotype in astrocytes, thereby exacerbating neuroinflammation by establishing an inflammatory loop. In this study, we hypothesized that excessive fibronectin<span> (FN) derived from reactive astrocytes would induce this proinflammatory phenotype in astrocytes in an autocrine manner. We exogenously treated astrocytes with monomer FN, which can be incorporated into the </span></span></span></span>extracellular matrix<span> (ECM), to mimic plasma FN extravasated through a compromised blood–brain barrier in neuroinflammation. We also induced de novo synthesis and accumulation of astrocyte-derived FN through tumor necrosis factor-α (TNF-α) stimulation. The excessive FN deposition resulting from both treatments initiated reactive astrogliosis and triggered NF-κB signaling in the cultured astrocytes. In addition, inhibition of FN accumulation in the ECM by the FN inhibitor pUR4 strongly attenuated the FN- and TNF-α-induced GFAP expression, NF-κB activation, and proinflammatory mediator production of astrocytes by interrupting FN–β1 integrin coupling and thus the inflammatory loop. In an in vivo experiment, </span></span></span>intrathecal injection of pUR4 considerably ameliorated FN deposition, GFAP expression, and NF-κB activation in inflamed spinal cord, suggesting the therapeutic potential of pUR4 for attenuating neuroinflammation and promoting neuronal function restoration.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"125 ","pages":"Article 103848"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrocyte-associated fibronectin promotes the proinflammatory phenotype of astrocytes through β1 integrin activation\",\"authors\":\"Pao-Hsien Chu ,&nbsp;Shao-Chi Chen ,&nbsp;Hsin-Yung Chen ,&nbsp;Cheng-Bei Wu ,&nbsp;Wei-Ting Huang ,&nbsp;Hou-Yu Chiang\",\"doi\":\"10.1016/j.mcn.2023.103848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Astrocytes are key players in neuroinflammation. In response to central nervous system<span><span> (CNS) injury or disease, astrocytes undergo reactive astrogliosis<span>, which is characterized by increased proliferation, migration, and glial fibrillary acidic protein<span> (GFAP) expression. Activation of the transcription factor nuclear factor-κB (NF-κB) and upregulation of downstream proinflammatory mediators in reactive astrocytes induce a proinflammatory phenotype in astrocytes, thereby exacerbating neuroinflammation by establishing an inflammatory loop. In this study, we hypothesized that excessive fibronectin<span> (FN) derived from reactive astrocytes would induce this proinflammatory phenotype in astrocytes in an autocrine manner. We exogenously treated astrocytes with monomer FN, which can be incorporated into the </span></span></span></span>extracellular matrix<span> (ECM), to mimic plasma FN extravasated through a compromised blood–brain barrier in neuroinflammation. We also induced de novo synthesis and accumulation of astrocyte-derived FN through tumor necrosis factor-α (TNF-α) stimulation. The excessive FN deposition resulting from both treatments initiated reactive astrogliosis and triggered NF-κB signaling in the cultured astrocytes. In addition, inhibition of FN accumulation in the ECM by the FN inhibitor pUR4 strongly attenuated the FN- and TNF-α-induced GFAP expression, NF-κB activation, and proinflammatory mediator production of astrocytes by interrupting FN–β1 integrin coupling and thus the inflammatory loop. In an in vivo experiment, </span></span></span>intrathecal injection of pUR4 considerably ameliorated FN deposition, GFAP expression, and NF-κB activation in inflamed spinal cord, suggesting the therapeutic potential of pUR4 for attenuating neuroinflammation and promoting neuronal function restoration.</p></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"125 \",\"pages\":\"Article 103848\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743123000428\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743123000428","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

星形胶质细胞是神经炎症的关键因素。作为对中枢神经系统(CNS)损伤或疾病的反应,星形胶质细胞发生反应性星形胶质细胞增生,其特征是增殖、迁移和胶质纤维酸性蛋白(GFAP)表达增加。反应性星形胶质细胞中转录因子核因子-κB(NF-κB)的激活和下游促炎介质的上调诱导星形胶质细胞的促炎表型,从而通过建立炎症循环加剧神经炎症。在这项研究中,我们假设来自反应性星形胶质细胞的过量纤连蛋白(FN)会以自分泌的方式在星形胶质细胞中诱导这种促炎表型。我们用单体FN外源性处理星形胶质细胞,单体FN可以结合到细胞外基质(ECM)中,以模拟在神经炎症中通过受损的血脑屏障渗出的血浆FN。我们还通过肿瘤坏死因子-α(TNF-α)刺激诱导星形胶质细胞衍生的FN的从头合成和积累。两种治疗导致的过量FN沉积引发了反应性星形胶质细胞增生,并触发了培养的星形胶质细胞中的NF-κB信号传导。此外,FN抑制剂pUR4对ECM中FN积聚的抑制,通过阻断FN–β1整合素偶联,从而阻断炎症环,强烈减弱了FN和TNF-α诱导的星形胶质细胞的GFAP表达、NF-κB活化和促炎介质的产生。在体内实验中,鞘内注射pUR4显著改善了炎症脊髓中的FN沉积、GFAP表达和NF-κB活化,这表明pUR4在减轻神经炎症和促进神经元功能恢复方面具有治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Astrocyte-associated fibronectin promotes the proinflammatory phenotype of astrocytes through β1 integrin activation

Astrocytes are key players in neuroinflammation. In response to central nervous system (CNS) injury or disease, astrocytes undergo reactive astrogliosis, which is characterized by increased proliferation, migration, and glial fibrillary acidic protein (GFAP) expression. Activation of the transcription factor nuclear factor-κB (NF-κB) and upregulation of downstream proinflammatory mediators in reactive astrocytes induce a proinflammatory phenotype in astrocytes, thereby exacerbating neuroinflammation by establishing an inflammatory loop. In this study, we hypothesized that excessive fibronectin (FN) derived from reactive astrocytes would induce this proinflammatory phenotype in astrocytes in an autocrine manner. We exogenously treated astrocytes with monomer FN, which can be incorporated into the extracellular matrix (ECM), to mimic plasma FN extravasated through a compromised blood–brain barrier in neuroinflammation. We also induced de novo synthesis and accumulation of astrocyte-derived FN through tumor necrosis factor-α (TNF-α) stimulation. The excessive FN deposition resulting from both treatments initiated reactive astrogliosis and triggered NF-κB signaling in the cultured astrocytes. In addition, inhibition of FN accumulation in the ECM by the FN inhibitor pUR4 strongly attenuated the FN- and TNF-α-induced GFAP expression, NF-κB activation, and proinflammatory mediator production of astrocytes by interrupting FN–β1 integrin coupling and thus the inflammatory loop. In an in vivo experiment, intrathecal injection of pUR4 considerably ameliorated FN deposition, GFAP expression, and NF-κB activation in inflamed spinal cord, suggesting the therapeutic potential of pUR4 for attenuating neuroinflammation and promoting neuronal function restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
65
审稿时长
37 days
期刊介绍: Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.
期刊最新文献
The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia Sphingosine-1-phosphate receptor 3 promotes neuronal apoptosis via the TNF-α/caspase-3 signaling pathway after acute intracerebral hemorrhage TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1