Alessandra Zonari, Lear E Brace, Kallie Al-Katib, William F Porto, Daniel Foyt, Mylieneth Guiang, Edgar Andres Ochoa Cruz, Bailey Marshall, Melissa Gentz, Gabriela Rapozo Guimarães, Octavio L Franco, Carolina R Oliveira, Mariana Boroni, Juliana L Carvalho
{"title":"衰老治疗肽疗法可降低人体皮肤模型的生物年龄和衰老负担。","authors":"Alessandra Zonari, Lear E Brace, Kallie Al-Katib, William F Porto, Daniel Foyt, Mylieneth Guiang, Edgar Andres Ochoa Cruz, Bailey Marshall, Melissa Gentz, Gabriela Rapozo Guimarães, Octavio L Franco, Carolina R Oliveira, Mariana Boroni, Juliana L Carvalho","doi":"10.1038/s41514-023-00109-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.</p>","PeriodicalId":19348,"journal":{"name":"npj Aging","volume":"9 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203313/pdf/","citationCount":"0","resultStr":"{\"title\":\"Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models.\",\"authors\":\"Alessandra Zonari, Lear E Brace, Kallie Al-Katib, William F Porto, Daniel Foyt, Mylieneth Guiang, Edgar Andres Ochoa Cruz, Bailey Marshall, Melissa Gentz, Gabriela Rapozo Guimarães, Octavio L Franco, Carolina R Oliveira, Mariana Boroni, Juliana L Carvalho\",\"doi\":\"10.1038/s41514-023-00109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.</p>\",\"PeriodicalId\":19348,\"journal\":{\"name\":\"npj Aging\",\"volume\":\"9 1\",\"pages\":\"10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-023-00109-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-023-00109-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,细胞衰老在与年龄相关的皮肤功能衰退中扮演着重要角色,而皮肤功能衰退有可能影响人的寿命。在这里,我们通过两步表型筛选来确定治疗衰老的多肽,最终确定了多肽(Pep)14。Pep 14 能有效降低哈钦森-吉尔福德早衰综合征(HGPS)、慢性衰老、紫外线-B 辐射(UVB)和依托泊苷治疗诱导的人类真皮成纤维细胞衰老负担,且不会产生明显毒性。Pep 14 通过调节 PP2A 发挥作用,PP2A 是一种未被充分研究的全酶,可促进基因组稳定性,并参与 DNA 修复和衰老途径。在单细胞水平上,Pep 14 可通过抑制细胞周期和加强 DNA 修复来调节防止衰老进展的基因,从而减少进入晚期衰老的细胞数量。将 Pep 14 应用于老化的体外皮肤时,可促进健康皮肤表型的形成,其结构和分子与年轻的体外皮肤相似,减少衰老标志物(包括 SASP)的表达,并降低 DNA 甲基化年龄。总之,这项研究表明,一种衰老肽可以安全地降低人体活体皮肤的生物年龄。
Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models.
Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.