在交流基于苹果与橘子比较的分析时,需要谨慎。

IF 8.3 Q1 OBSTETRICS & GYNECOLOGY Human reproduction open Pub Date : 2023-01-01 DOI:10.1093/hropen/hoad016
Birgit Alsbjerg, Peter Humaidan
{"title":"在交流基于苹果与橘子比较的分析时,需要谨慎。","authors":"Birgit Alsbjerg,&nbsp;Peter Humaidan","doi":"10.1093/hropen/hoad016","DOIUrl":null,"url":null,"abstract":"It was with great interest that we read ‘The effect of frozen embryo transfer regimen on the association between serum progesterone and live birth: a multi-centre prospective cohort study (ProFET)’ by Melo et al. (2022). From their data, the authors concluded that overall serum progesterone levels (P4) <7.8 ng/ml are associated with reduced odds of live birth in frozen embryo transfer (FET). Interestingly, the authors previously published a meta-analysis (Melo et al., 2021) based on several cohort studies of HRT-FET cycles using vaginal progesterone for luteal phase support and reporting a higher P4 cut-off <10 ng/ml for the reproductive outcome. Thus, in that analysis, higher serum P4 levels were associated with increased ongoing pregnancy or live birth rates (LBRs). An important question to ask in relation to the newest publication by Melo et al. (2022) would be: is this suggested new cut-off of serum P4 of 7.8 ng/ml more accurate than 10 ng/ml, and is this cut-off applicable to all FET protocols? Reading the publication carefully reveals that the present study was powered to 900 FET cycles; however, only a total of 398 cycles were included in the final analysis. Furthermore, the cohort of FET protocols was very heterogeneous, including HRT-FET, true natural cycle (t-NC), and modified natural cycle (m-NC), in which ovulation is induced with a trigger bolus of hCG. In this context, we have to bear in mind that the FET protocols mentioned are very different in terms of basic endocrinology, first and foremost when considering serum P4. Thus, the natural cycle has a circadian luteal phase progesterone pattern due to the endogenous production of progesterone from the corpus luteum and importantly, in the new Melo et al. (2022) study, a huge variation in the type of ‘NC FET’ protocols was allowed. Thus, different hCG-trigger doses (5000 vs 6500 IE) were used which will definitely have an impact on circulating luteal P4; moreover, in some cycles, no hCG trigger (t-NC) was used and some cycles had vaginal progesterone support whereas others did not. Finally, different dosing and types of vaginal micronized progesterone were used (CyclogestR , UtrogestanR ). Altogether, within a cohort of 45 ‘NC FET’, there might have been as many as nine different combinations; importantly, these differences will invariably result in significant differences in luteal P4 profiles. Furthermore, in the cohort of HRT-FET cycles, we also learn that important differences were allowed in terms of different vaginal micronized progesterone products, differences in dosing regimen and differences in no use or use of a combination of subcutaneous (s.c.) progesterone (LubionR ), 25 mg once daily or twice daily. For monitoring, the authors state that blood sampling was performed 4–6 h after the last administration of exogenous progesterone. Again, the reader might ask, what does ‘approximately’ mean? One hour, two hours—or more? Timing of luteal phase blood sampling is crucial, especially when considering an exogenous progesterone regimen including s.c. progesterone. Thus, after s.c. injection of water-soluble progesterone, a 10-fold increase in the serum P4 level is seen and, as early as after 1 h, the P4 serum level starts decreasing. As previously reported, the mean P4 level 24 h after administration of 25 mg s.c. progesterone is as low as 5 ng/ml (Sator et al., 2013). This complexity in pharmacokinetics is essential for monitoring of blood sampling. Although the Melo et al. (2022) study was prospective and P4 levels were blinded for the clinicians, the multiple protocol variations used were entirely owing to clinicans’ preference, which may also have influenced the results. The most interesting finding of the Melo et al. (2022) study is that s.c. progesterone 25 mg twice daily was used as a ‘standard HRT-FET’ protocol. To our knowledge, this is the first prospective study to report LBR in HRT-FET cycles using only s.c. progesterone. Although the study was not powered for LBR and only 57 FET cycles were included, an LBR of 28% compared to the HRT-FET LBR of 43% could be considered rather low, and a total miscarriage rate of 41% high, indicating that s.c. progesterone as a stand-alone treatment in the dosing described is not sufficient for the HRT-FET cycle. Regardless of the meticulous statistical analysis and graphic communication in this publication, we challenge the authors as to whether it is good scientific ‘evidence’ to suggest a new cut-off level of 7.8 ng/ml for more or less all FET protocols, based on the reproductive outcome of 10% of a very heterogeneous cohort, including a total of 398 FET cycles in a study powered to 900 cycles. As clinicians, we should always critically review dazzling statistics—especially when apples are compared to oranges.","PeriodicalId":73264,"journal":{"name":"Human reproduction open","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2c/9c/hoad016.PMC10234700.pdf","citationCount":"1","resultStr":"{\"title\":\"Caution is needed when communicating analyses based on an apple to orange comparison.\",\"authors\":\"Birgit Alsbjerg,&nbsp;Peter Humaidan\",\"doi\":\"10.1093/hropen/hoad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was with great interest that we read ‘The effect of frozen embryo transfer regimen on the association between serum progesterone and live birth: a multi-centre prospective cohort study (ProFET)’ by Melo et al. (2022). From their data, the authors concluded that overall serum progesterone levels (P4) <7.8 ng/ml are associated with reduced odds of live birth in frozen embryo transfer (FET). Interestingly, the authors previously published a meta-analysis (Melo et al., 2021) based on several cohort studies of HRT-FET cycles using vaginal progesterone for luteal phase support and reporting a higher P4 cut-off <10 ng/ml for the reproductive outcome. Thus, in that analysis, higher serum P4 levels were associated with increased ongoing pregnancy or live birth rates (LBRs). An important question to ask in relation to the newest publication by Melo et al. (2022) would be: is this suggested new cut-off of serum P4 of 7.8 ng/ml more accurate than 10 ng/ml, and is this cut-off applicable to all FET protocols? Reading the publication carefully reveals that the present study was powered to 900 FET cycles; however, only a total of 398 cycles were included in the final analysis. Furthermore, the cohort of FET protocols was very heterogeneous, including HRT-FET, true natural cycle (t-NC), and modified natural cycle (m-NC), in which ovulation is induced with a trigger bolus of hCG. In this context, we have to bear in mind that the FET protocols mentioned are very different in terms of basic endocrinology, first and foremost when considering serum P4. Thus, the natural cycle has a circadian luteal phase progesterone pattern due to the endogenous production of progesterone from the corpus luteum and importantly, in the new Melo et al. (2022) study, a huge variation in the type of ‘NC FET’ protocols was allowed. Thus, different hCG-trigger doses (5000 vs 6500 IE) were used which will definitely have an impact on circulating luteal P4; moreover, in some cycles, no hCG trigger (t-NC) was used and some cycles had vaginal progesterone support whereas others did not. Finally, different dosing and types of vaginal micronized progesterone were used (CyclogestR , UtrogestanR ). Altogether, within a cohort of 45 ‘NC FET’, there might have been as many as nine different combinations; importantly, these differences will invariably result in significant differences in luteal P4 profiles. Furthermore, in the cohort of HRT-FET cycles, we also learn that important differences were allowed in terms of different vaginal micronized progesterone products, differences in dosing regimen and differences in no use or use of a combination of subcutaneous (s.c.) progesterone (LubionR ), 25 mg once daily or twice daily. For monitoring, the authors state that blood sampling was performed 4–6 h after the last administration of exogenous progesterone. Again, the reader might ask, what does ‘approximately’ mean? One hour, two hours—or more? Timing of luteal phase blood sampling is crucial, especially when considering an exogenous progesterone regimen including s.c. progesterone. Thus, after s.c. injection of water-soluble progesterone, a 10-fold increase in the serum P4 level is seen and, as early as after 1 h, the P4 serum level starts decreasing. As previously reported, the mean P4 level 24 h after administration of 25 mg s.c. progesterone is as low as 5 ng/ml (Sator et al., 2013). This complexity in pharmacokinetics is essential for monitoring of blood sampling. Although the Melo et al. (2022) study was prospective and P4 levels were blinded for the clinicians, the multiple protocol variations used were entirely owing to clinicans’ preference, which may also have influenced the results. The most interesting finding of the Melo et al. (2022) study is that s.c. progesterone 25 mg twice daily was used as a ‘standard HRT-FET’ protocol. To our knowledge, this is the first prospective study to report LBR in HRT-FET cycles using only s.c. progesterone. Although the study was not powered for LBR and only 57 FET cycles were included, an LBR of 28% compared to the HRT-FET LBR of 43% could be considered rather low, and a total miscarriage rate of 41% high, indicating that s.c. progesterone as a stand-alone treatment in the dosing described is not sufficient for the HRT-FET cycle. Regardless of the meticulous statistical analysis and graphic communication in this publication, we challenge the authors as to whether it is good scientific ‘evidence’ to suggest a new cut-off level of 7.8 ng/ml for more or less all FET protocols, based on the reproductive outcome of 10% of a very heterogeneous cohort, including a total of 398 FET cycles in a study powered to 900 cycles. As clinicians, we should always critically review dazzling statistics—especially when apples are compared to oranges.\",\"PeriodicalId\":73264,\"journal\":{\"name\":\"Human reproduction open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2c/9c/hoad016.PMC10234700.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human reproduction open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/hropen/hoad016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human reproduction open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/hropen/hoad016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caution is needed when communicating analyses based on an apple to orange comparison.
It was with great interest that we read ‘The effect of frozen embryo transfer regimen on the association between serum progesterone and live birth: a multi-centre prospective cohort study (ProFET)’ by Melo et al. (2022). From their data, the authors concluded that overall serum progesterone levels (P4) <7.8 ng/ml are associated with reduced odds of live birth in frozen embryo transfer (FET). Interestingly, the authors previously published a meta-analysis (Melo et al., 2021) based on several cohort studies of HRT-FET cycles using vaginal progesterone for luteal phase support and reporting a higher P4 cut-off <10 ng/ml for the reproductive outcome. Thus, in that analysis, higher serum P4 levels were associated with increased ongoing pregnancy or live birth rates (LBRs). An important question to ask in relation to the newest publication by Melo et al. (2022) would be: is this suggested new cut-off of serum P4 of 7.8 ng/ml more accurate than 10 ng/ml, and is this cut-off applicable to all FET protocols? Reading the publication carefully reveals that the present study was powered to 900 FET cycles; however, only a total of 398 cycles were included in the final analysis. Furthermore, the cohort of FET protocols was very heterogeneous, including HRT-FET, true natural cycle (t-NC), and modified natural cycle (m-NC), in which ovulation is induced with a trigger bolus of hCG. In this context, we have to bear in mind that the FET protocols mentioned are very different in terms of basic endocrinology, first and foremost when considering serum P4. Thus, the natural cycle has a circadian luteal phase progesterone pattern due to the endogenous production of progesterone from the corpus luteum and importantly, in the new Melo et al. (2022) study, a huge variation in the type of ‘NC FET’ protocols was allowed. Thus, different hCG-trigger doses (5000 vs 6500 IE) were used which will definitely have an impact on circulating luteal P4; moreover, in some cycles, no hCG trigger (t-NC) was used and some cycles had vaginal progesterone support whereas others did not. Finally, different dosing and types of vaginal micronized progesterone were used (CyclogestR , UtrogestanR ). Altogether, within a cohort of 45 ‘NC FET’, there might have been as many as nine different combinations; importantly, these differences will invariably result in significant differences in luteal P4 profiles. Furthermore, in the cohort of HRT-FET cycles, we also learn that important differences were allowed in terms of different vaginal micronized progesterone products, differences in dosing regimen and differences in no use or use of a combination of subcutaneous (s.c.) progesterone (LubionR ), 25 mg once daily or twice daily. For monitoring, the authors state that blood sampling was performed 4–6 h after the last administration of exogenous progesterone. Again, the reader might ask, what does ‘approximately’ mean? One hour, two hours—or more? Timing of luteal phase blood sampling is crucial, especially when considering an exogenous progesterone regimen including s.c. progesterone. Thus, after s.c. injection of water-soluble progesterone, a 10-fold increase in the serum P4 level is seen and, as early as after 1 h, the P4 serum level starts decreasing. As previously reported, the mean P4 level 24 h after administration of 25 mg s.c. progesterone is as low as 5 ng/ml (Sator et al., 2013). This complexity in pharmacokinetics is essential for monitoring of blood sampling. Although the Melo et al. (2022) study was prospective and P4 levels were blinded for the clinicians, the multiple protocol variations used were entirely owing to clinicans’ preference, which may also have influenced the results. The most interesting finding of the Melo et al. (2022) study is that s.c. progesterone 25 mg twice daily was used as a ‘standard HRT-FET’ protocol. To our knowledge, this is the first prospective study to report LBR in HRT-FET cycles using only s.c. progesterone. Although the study was not powered for LBR and only 57 FET cycles were included, an LBR of 28% compared to the HRT-FET LBR of 43% could be considered rather low, and a total miscarriage rate of 41% high, indicating that s.c. progesterone as a stand-alone treatment in the dosing described is not sufficient for the HRT-FET cycle. Regardless of the meticulous statistical analysis and graphic communication in this publication, we challenge the authors as to whether it is good scientific ‘evidence’ to suggest a new cut-off level of 7.8 ng/ml for more or less all FET protocols, based on the reproductive outcome of 10% of a very heterogeneous cohort, including a total of 398 FET cycles in a study powered to 900 cycles. As clinicians, we should always critically review dazzling statistics—especially when apples are compared to oranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Prior exposure to alkylating agents negatively impacts testicular organoid formation in cells obtained from childhood cancer patients. Aging promotes accumulation of senescent and multiciliated cells in human endometrial epithelium. The oocyte microenvironment is altered in adolescents compared to oocyte donors. Extended versus conventional letrozole regimen in patients with polycystic ovary syndrome undergoing their first ovulation induction cycle: a prospective randomized controlled trial Is retrograde menstruation a universal, recurrent, physiological phenomenon? A systematic review of the evidence in humans and non-human primates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1