Dana K Tucker, Chloe S Adams, Gauri Prasad, Brian D Ackley
{"title":"免疫球蛋白超家族成员syg-2和syg-1调节秀丽隐杆线虫的神经突发育。","authors":"Dana K Tucker, Chloe S Adams, Gauri Prasad, Brian D Ackley","doi":"10.3390/jdb10010003","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons form elaborate networks by guiding axons and dendrites to appropriate destinations. Neurites require information about the relative body axes during the initial projection from the cell body, and failure to receive or interpret those cues correctly can result in outgrowth errors. We identified a mutation in the Ig superfamily member <i>syg-2</i> in a screen for animals with anterior/posterior (A/P) axon guidance defects. We found that <i>syg-2</i> and its cognate Ig family member <i>syg-1</i> appear to function in a linear genetic pathway to control the outgrowth of GABAergic axons. We determined that this pathway works in parallel to Wnt signaling. Specifically, mutations in <i>syg-2</i> or <i>syg-1</i> selectively affected the embryonically derived Dorsal D-type (DD) GABAergic neurons. We found no evidence that these mutations affected the Ventral D-type neurons (VD) that form later, during the first larval stage. In addition, mutations in <i>syg-1</i> or <i>syg-2</i> could result in the DD neurons forming multiple processes, becoming bipolar, rather than the expected pseudounipolar morphology. Given SYG-2's essential function in synaptogenesis of the hermaphrodite-specific neurons (HSNs), we also examined DD neuron synapses in <i>syg-2</i> mutants. We found <i>syg-2</i> mutants had a decreased number of synapses formed, but synaptic morphology was largely normal. These results provide further evidence that the GABAergic motorneurons use multiple guidance pathways during development.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"10 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788504/pdf/","citationCount":"1","resultStr":"{\"title\":\"The Immunoglobulin Superfamily Members <i>syg-2</i> and <i>syg-1</i> Regulate Neurite Development in <i>C. elegans</i>.\",\"authors\":\"Dana K Tucker, Chloe S Adams, Gauri Prasad, Brian D Ackley\",\"doi\":\"10.3390/jdb10010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurons form elaborate networks by guiding axons and dendrites to appropriate destinations. Neurites require information about the relative body axes during the initial projection from the cell body, and failure to receive or interpret those cues correctly can result in outgrowth errors. We identified a mutation in the Ig superfamily member <i>syg-2</i> in a screen for animals with anterior/posterior (A/P) axon guidance defects. We found that <i>syg-2</i> and its cognate Ig family member <i>syg-1</i> appear to function in a linear genetic pathway to control the outgrowth of GABAergic axons. We determined that this pathway works in parallel to Wnt signaling. Specifically, mutations in <i>syg-2</i> or <i>syg-1</i> selectively affected the embryonically derived Dorsal D-type (DD) GABAergic neurons. We found no evidence that these mutations affected the Ventral D-type neurons (VD) that form later, during the first larval stage. In addition, mutations in <i>syg-1</i> or <i>syg-2</i> could result in the DD neurons forming multiple processes, becoming bipolar, rather than the expected pseudounipolar morphology. Given SYG-2's essential function in synaptogenesis of the hermaphrodite-specific neurons (HSNs), we also examined DD neuron synapses in <i>syg-2</i> mutants. We found <i>syg-2</i> mutants had a decreased number of synapses formed, but synaptic morphology was largely normal. These results provide further evidence that the GABAergic motorneurons use multiple guidance pathways during development.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788504/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb10010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb10010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans.
Neurons form elaborate networks by guiding axons and dendrites to appropriate destinations. Neurites require information about the relative body axes during the initial projection from the cell body, and failure to receive or interpret those cues correctly can result in outgrowth errors. We identified a mutation in the Ig superfamily member syg-2 in a screen for animals with anterior/posterior (A/P) axon guidance defects. We found that syg-2 and its cognate Ig family member syg-1 appear to function in a linear genetic pathway to control the outgrowth of GABAergic axons. We determined that this pathway works in parallel to Wnt signaling. Specifically, mutations in syg-2 or syg-1 selectively affected the embryonically derived Dorsal D-type (DD) GABAergic neurons. We found no evidence that these mutations affected the Ventral D-type neurons (VD) that form later, during the first larval stage. In addition, mutations in syg-1 or syg-2 could result in the DD neurons forming multiple processes, becoming bipolar, rather than the expected pseudounipolar morphology. Given SYG-2's essential function in synaptogenesis of the hermaphrodite-specific neurons (HSNs), we also examined DD neuron synapses in syg-2 mutants. We found syg-2 mutants had a decreased number of synapses formed, but synaptic morphology was largely normal. These results provide further evidence that the GABAergic motorneurons use multiple guidance pathways during development.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.