番茄叶片对中央叶脉损伤的反应中,脂质在空间化学变化上的保留和变化揭示了亚麻酸在信号转导级联中的潜在来源。

Q3 Agricultural and Biological Sciences Plant-environment interactions (Hoboken, N.J.) Pub Date : 2021-02-01 DOI:10.1002/pei3.10038
Dušan Veličković, Rosalie K Chu, Corinna Henkel, Annika Nyhuis, Nannan Tao, Jennifer E Kyle, Joshua N Adkins, Christopher R Anderton, Vanessa Paurus, Kent Bloodsworth, Lisa M Bramer, Dale S Cornett, Wayne R Curtis, Kristin E Burnum-Johnson
{"title":"番茄叶片对中央叶脉损伤的反应中,脂质在空间化学变化上的保留和变化揭示了亚麻酸在信号转导级联中的潜在来源。","authors":"Dušan Veličković, Rosalie K Chu, Corinna Henkel, Annika Nyhuis, Nannan Tao, Jennifer E Kyle, Joshua N Adkins, Christopher R Anderton, Vanessa Paurus, Kent Bloodsworth, Lisa M Bramer, Dale S Cornett, Wayne R Curtis, Kristin E Burnum-Johnson","doi":"10.1002/pei3.10038","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane lipids serve as substrates for the generation of numerous signaling lipids when plants are exposed to environmental stresses, and jasmonic acid, an oxidized product of 18-carbon unsaturated fatty acids (e.g., linolenic acid), has been recognized as the essential signal in wound-induced gene expression. Yet, the contribution of individual membrane lipids in linolenic acid generation is ill-defined. In this work, we performed spatial lipidomic experiments to track lipid changes that occur locally at the sight of leaf injury to better understand the potential origin of linolenic and linoleic acids from individual membrane lipids. The central veins of tomato leaflets were crushed using surgical forceps, leaves were cryosectioned and analyzed by two orthogonal matrix-assisted laser desorption/ionization mass spectrometry imaging platforms for insight into lipid spatial distribution. Significant changes in lipid composition are only observed 30 min after wounding, while after 60 min lipidome homeostasis has been re-established. Phosphatidylcholines exhibit a variable pattern of spatial behavior in individual plants. Among lysolipids, lysophosphatidylcholines strongly co-localize with the injured zone of wounded leaflets, while, for example, lysophosphatidylglycerol (LPG) (16:1) accumulated preferentially toward the apex in the injured zone of wounded leaflets. In contrast, two other LPGs (LPG [18:3] and LPG [18:2]) are depleted in the injured zone. Our high-resolution co-localization imaging analyses suggest that linolenic acids are predominantly released from PCs with 16_18 fatty acid composition along the entire leaf, while it seems that in the apex zone PG (16:1_18:3) significantly contributes to the linolenic acid pool. These results also indicate distinct localization and/or substrate preferences of phospholipase isoforms in leaf tissue.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade.\",\"authors\":\"Dušan Veličković, Rosalie K Chu, Corinna Henkel, Annika Nyhuis, Nannan Tao, Jennifer E Kyle, Joshua N Adkins, Christopher R Anderton, Vanessa Paurus, Kent Bloodsworth, Lisa M Bramer, Dale S Cornett, Wayne R Curtis, Kristin E Burnum-Johnson\",\"doi\":\"10.1002/pei3.10038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membrane lipids serve as substrates for the generation of numerous signaling lipids when plants are exposed to environmental stresses, and jasmonic acid, an oxidized product of 18-carbon unsaturated fatty acids (e.g., linolenic acid), has been recognized as the essential signal in wound-induced gene expression. Yet, the contribution of individual membrane lipids in linolenic acid generation is ill-defined. In this work, we performed spatial lipidomic experiments to track lipid changes that occur locally at the sight of leaf injury to better understand the potential origin of linolenic and linoleic acids from individual membrane lipids. The central veins of tomato leaflets were crushed using surgical forceps, leaves were cryosectioned and analyzed by two orthogonal matrix-assisted laser desorption/ionization mass spectrometry imaging platforms for insight into lipid spatial distribution. Significant changes in lipid composition are only observed 30 min after wounding, while after 60 min lipidome homeostasis has been re-established. Phosphatidylcholines exhibit a variable pattern of spatial behavior in individual plants. Among lysolipids, lysophosphatidylcholines strongly co-localize with the injured zone of wounded leaflets, while, for example, lysophosphatidylglycerol (LPG) (16:1) accumulated preferentially toward the apex in the injured zone of wounded leaflets. In contrast, two other LPGs (LPG [18:3] and LPG [18:2]) are depleted in the injured zone. Our high-resolution co-localization imaging analyses suggest that linolenic acids are predominantly released from PCs with 16_18 fatty acid composition along the entire leaf, while it seems that in the apex zone PG (16:1_18:3) significantly contributes to the linolenic acid pool. These results also indicate distinct localization and/or substrate preferences of phospholipase isoforms in leaf tissue.</p>\",\"PeriodicalId\":74457,\"journal\":{\"name\":\"Plant-environment interactions (Hoboken, N.J.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant-environment interactions (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pei3.10038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.10038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

当植物受到环境胁迫时,膜脂是生成多种信号脂的底物,茉莉酸是 18 碳不饱和脂肪酸(如亚麻酸)的氧化产物,已被认为是伤口诱导基因表达的重要信号。然而,单个膜脂在亚麻酸生成过程中的作用还不明确。在这项工作中,我们进行了空间脂质体实验,跟踪叶片受伤时局部发生的脂质变化,以更好地了解亚麻酸和亚油酸可能来自于单个膜脂。用手术镊子夹碎番茄小叶的中央叶脉,对叶片进行冷冻切片,并通过两个正交的基质辅助激光解吸/电离质谱成像平台进行分析,以深入了解脂质的空间分布。只有在伤口愈合 30 分钟后才能观察到脂质组成的显著变化,而在 60 分钟后,脂质组的平衡状态已经恢复。磷脂酰胆碱在单株植物中表现出不同的空间行为模式。在溶血磷脂中,溶血磷脂酰胆碱与受伤小叶的受伤区高度共定位,而溶血磷脂酰甘油(LPG)(16:1)则优先向受伤小叶的受伤区顶端积累。与此相反,其他两种 LPG(LPG [18:3] 和 LPG [18:2])则在受伤区域消耗殆尽。我们的高分辨率共定位成像分析表明,亚麻酸主要是从整个叶片中脂肪酸组成为 16_18 的 PC 中释放出来的,而在顶端区,PG(16:1_18:3)似乎在亚麻酸池中占很大比例。这些结果还表明磷脂酶同工型在叶组织中有不同的定位和/或底物偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade.

Membrane lipids serve as substrates for the generation of numerous signaling lipids when plants are exposed to environmental stresses, and jasmonic acid, an oxidized product of 18-carbon unsaturated fatty acids (e.g., linolenic acid), has been recognized as the essential signal in wound-induced gene expression. Yet, the contribution of individual membrane lipids in linolenic acid generation is ill-defined. In this work, we performed spatial lipidomic experiments to track lipid changes that occur locally at the sight of leaf injury to better understand the potential origin of linolenic and linoleic acids from individual membrane lipids. The central veins of tomato leaflets were crushed using surgical forceps, leaves were cryosectioned and analyzed by two orthogonal matrix-assisted laser desorption/ionization mass spectrometry imaging platforms for insight into lipid spatial distribution. Significant changes in lipid composition are only observed 30 min after wounding, while after 60 min lipidome homeostasis has been re-established. Phosphatidylcholines exhibit a variable pattern of spatial behavior in individual plants. Among lysolipids, lysophosphatidylcholines strongly co-localize with the injured zone of wounded leaflets, while, for example, lysophosphatidylglycerol (LPG) (16:1) accumulated preferentially toward the apex in the injured zone of wounded leaflets. In contrast, two other LPGs (LPG [18:3] and LPG [18:2]) are depleted in the injured zone. Our high-resolution co-localization imaging analyses suggest that linolenic acids are predominantly released from PCs with 16_18 fatty acid composition along the entire leaf, while it seems that in the apex zone PG (16:1_18:3) significantly contributes to the linolenic acid pool. These results also indicate distinct localization and/or substrate preferences of phospholipase isoforms in leaf tissue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Untying the knot: Unraveling genetic mechanisms behind black knot disease resistance in Prunus salicina (Japanese plum). Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. An intelligent system for determining the degree of tree bark beetle damage based on the use of generative-adversarial neural networks. Picophytoplankton prevail year-round in the Elbe estuary. How dry is dead? Evaluating the impact of desiccation on the viability of the invasive species Cissus quadrangularis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1