Zixiao Wang , Zihao Liu , Shan Wang , Xin Bing , Xiaoshuai Ji , Dong He , Min Han , Yanbang Wei , Chanyue Wang , Qian Xia , Jianqiao Yang , Jiajia Gao , Xianyong Yin , Zhihai Wang , Zehan Shang , Jiacan Xu , Tao Xin , Qian Liu
{"title":"水凝胶-脂质体纳米平台通过诱导铁下垂抑制胶质母细胞瘤复发","authors":"Zixiao Wang , Zihao Liu , Shan Wang , Xin Bing , Xiaoshuai Ji , Dong He , Min Han , Yanbang Wei , Chanyue Wang , Qian Xia , Jianqiao Yang , Jiajia Gao , Xianyong Yin , Zhihai Wang , Zehan Shang , Jiacan Xu , Tao Xin , Qian Liu","doi":"10.1016/j.ajps.2023.100800","DOIUrl":null,"url":null,"abstract":"<div><p>Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults. However, the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment. Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer. The utilization of ferropotosis inducer Erastin could significantly mediate chemotherapy sensitization of Temozolomide and exert anti-tumor effects in glioblastoma. In this study, a combination of hydrogel-liposome nanoplatform encapsulated with Temozolomide and ferroptosis inducer Erastin was constructed. The αvβ3 integrin-binding peptide cyclic RGD was utilized to modify codelivery system to achieve glioblastoma targeting strategy. As biocompatible drug reservoirs, cross-linked GelMA (gelatin methacrylamide) hydrogel and cRGD-coated liposome realized the sustained release of internal contents. In the modified intracranial tumor resection model, GelMA-liposome system achieved slow release of Temozolomide and Erastin <em>in situ</em> for more than 14 d. The results indicated that nanoplatform (<em>T</em>+<em>E</em>@LPs-cRGD+GelMA) improved glioblastoma sensitivity to chemotherapeutic temozolomide and exerted satisfactory anti-tumor effects. It was demonstrated that the induction of ferroptosis could be utilized as a therapeutic strategy to overcome drug resistance. Furthermore, transcriptome sequencing was conducted to reveal the underlying mechanism that the nanoplatform (T+E@LPs-cRGD+GelMA) implicated in. It is suggested that GelMA-liposome system participated in the immune response and immunomodulation of glioblastoma via interferon/PD-L1 pathway. Collectively, this study proposed a potential combinatory therapeutic strategy for glioblastoma treatment.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 3","pages":"Article 100800"},"PeriodicalIF":10.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/22/1d/main.PMC10232663.pdf","citationCount":"2","resultStr":"{\"title\":\"Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis\",\"authors\":\"Zixiao Wang , Zihao Liu , Shan Wang , Xin Bing , Xiaoshuai Ji , Dong He , Min Han , Yanbang Wei , Chanyue Wang , Qian Xia , Jianqiao Yang , Jiajia Gao , Xianyong Yin , Zhihai Wang , Zehan Shang , Jiacan Xu , Tao Xin , Qian Liu\",\"doi\":\"10.1016/j.ajps.2023.100800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults. However, the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment. Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer. The utilization of ferropotosis inducer Erastin could significantly mediate chemotherapy sensitization of Temozolomide and exert anti-tumor effects in glioblastoma. In this study, a combination of hydrogel-liposome nanoplatform encapsulated with Temozolomide and ferroptosis inducer Erastin was constructed. The αvβ3 integrin-binding peptide cyclic RGD was utilized to modify codelivery system to achieve glioblastoma targeting strategy. As biocompatible drug reservoirs, cross-linked GelMA (gelatin methacrylamide) hydrogel and cRGD-coated liposome realized the sustained release of internal contents. In the modified intracranial tumor resection model, GelMA-liposome system achieved slow release of Temozolomide and Erastin <em>in situ</em> for more than 14 d. The results indicated that nanoplatform (<em>T</em>+<em>E</em>@LPs-cRGD+GelMA) improved glioblastoma sensitivity to chemotherapeutic temozolomide and exerted satisfactory anti-tumor effects. It was demonstrated that the induction of ferroptosis could be utilized as a therapeutic strategy to overcome drug resistance. Furthermore, transcriptome sequencing was conducted to reveal the underlying mechanism that the nanoplatform (T+E@LPs-cRGD+GelMA) implicated in. It is suggested that GelMA-liposome system participated in the immune response and immunomodulation of glioblastoma via interferon/PD-L1 pathway. Collectively, this study proposed a potential combinatory therapeutic strategy for glioblastoma treatment.</p></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":\"18 3\",\"pages\":\"Article 100800\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/22/1d/main.PMC10232663.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087623000272\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000272","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis
Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults. However, the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment. Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer. The utilization of ferropotosis inducer Erastin could significantly mediate chemotherapy sensitization of Temozolomide and exert anti-tumor effects in glioblastoma. In this study, a combination of hydrogel-liposome nanoplatform encapsulated with Temozolomide and ferroptosis inducer Erastin was constructed. The αvβ3 integrin-binding peptide cyclic RGD was utilized to modify codelivery system to achieve glioblastoma targeting strategy. As biocompatible drug reservoirs, cross-linked GelMA (gelatin methacrylamide) hydrogel and cRGD-coated liposome realized the sustained release of internal contents. In the modified intracranial tumor resection model, GelMA-liposome system achieved slow release of Temozolomide and Erastin in situ for more than 14 d. The results indicated that nanoplatform (T+E@LPs-cRGD+GelMA) improved glioblastoma sensitivity to chemotherapeutic temozolomide and exerted satisfactory anti-tumor effects. It was demonstrated that the induction of ferroptosis could be utilized as a therapeutic strategy to overcome drug resistance. Furthermore, transcriptome sequencing was conducted to reveal the underlying mechanism that the nanoplatform (T+E@LPs-cRGD+GelMA) implicated in. It is suggested that GelMA-liposome system participated in the immune response and immunomodulation of glioblastoma via interferon/PD-L1 pathway. Collectively, this study proposed a potential combinatory therapeutic strategy for glioblastoma treatment.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.