Chen Liang, Zixian Zhao, Sarah Liu, Ting Zhang, Wei Zuo
{"title":"阴道上皮的单细胞转录组分析揭示了基底上细胞的异质性。","authors":"Chen Liang, Zixian Zhao, Sarah Liu, Ting Zhang, Wei Zuo","doi":"10.1093/pcmedi/pbad006","DOIUrl":null,"url":null,"abstract":"The integrity of the vaginal epithelium is crucial for women’s reproductive health and for providing protection against HIV and sexually transmitted infections. 1 The vagina is a tubular tract made of fibromuscular and elastic tissue that connects the cervix to the outer genitals. Its main function is to discharge uterine secretions. 2 The vaginal epithelium (VE) is a keratinized, stratified squamous epithelium consisting of three layers: the basal layer, the suprabasal layer, and the apical cornified layer. 3 Estrogens induce the proliferation of basal epithelial cells in the vagina. The suprabasal cells, which are no longer mitogenic, differentiate as they move up through the epithelium. The apical cells undergo keratinization, lose their nuclei and cytoplasm, and eventually shed from the surface. 4 With multiple sexually transmitted diseases posing a significant threat to human health, 5 it is increasingly important to understand how the vaginal epithelium regenerates to maintain homeostasis and how it differs from the neighboring cervical epithelium. In this study, we extracted vaginal tissue from five adult virgin mice and conducted single-cell RNA sequencing (scRNA-seq) on the vaginal epithelium. We obtained a total of 7823 cells and isolated and sequenced","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"6 1","pages":"pbad006"},"PeriodicalIF":5.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptome profiling of the vaginal epithelium reveals the heterogeneity of suprabasal cells.\",\"authors\":\"Chen Liang, Zixian Zhao, Sarah Liu, Ting Zhang, Wei Zuo\",\"doi\":\"10.1093/pcmedi/pbad006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integrity of the vaginal epithelium is crucial for women’s reproductive health and for providing protection against HIV and sexually transmitted infections. 1 The vagina is a tubular tract made of fibromuscular and elastic tissue that connects the cervix to the outer genitals. Its main function is to discharge uterine secretions. 2 The vaginal epithelium (VE) is a keratinized, stratified squamous epithelium consisting of three layers: the basal layer, the suprabasal layer, and the apical cornified layer. 3 Estrogens induce the proliferation of basal epithelial cells in the vagina. The suprabasal cells, which are no longer mitogenic, differentiate as they move up through the epithelium. The apical cells undergo keratinization, lose their nuclei and cytoplasm, and eventually shed from the surface. 4 With multiple sexually transmitted diseases posing a significant threat to human health, 5 it is increasingly important to understand how the vaginal epithelium regenerates to maintain homeostasis and how it differs from the neighboring cervical epithelium. In this study, we extracted vaginal tissue from five adult virgin mice and conducted single-cell RNA sequencing (scRNA-seq) on the vaginal epithelium. We obtained a total of 7823 cells and isolated and sequenced\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":\"6 1\",\"pages\":\"pbad006\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbad006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbad006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Single-cell transcriptome profiling of the vaginal epithelium reveals the heterogeneity of suprabasal cells.
The integrity of the vaginal epithelium is crucial for women’s reproductive health and for providing protection against HIV and sexually transmitted infections. 1 The vagina is a tubular tract made of fibromuscular and elastic tissue that connects the cervix to the outer genitals. Its main function is to discharge uterine secretions. 2 The vaginal epithelium (VE) is a keratinized, stratified squamous epithelium consisting of three layers: the basal layer, the suprabasal layer, and the apical cornified layer. 3 Estrogens induce the proliferation of basal epithelial cells in the vagina. The suprabasal cells, which are no longer mitogenic, differentiate as they move up through the epithelium. The apical cells undergo keratinization, lose their nuclei and cytoplasm, and eventually shed from the surface. 4 With multiple sexually transmitted diseases posing a significant threat to human health, 5 it is increasingly important to understand how the vaginal epithelium regenerates to maintain homeostasis and how it differs from the neighboring cervical epithelium. In this study, we extracted vaginal tissue from five adult virgin mice and conducted single-cell RNA sequencing (scRNA-seq) on the vaginal epithelium. We obtained a total of 7823 cells and isolated and sequenced
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.