Tiantian Liu, Zhong Chen, Wanqiu Chen, Ryan Evans, Jane Xu, Mark E Reeves, Michael E de Vera, Charles Wang
{"title":"失调的 miRNA 可调节胰腺导管腺癌中与肿瘤微环境相关的信号网络。","authors":"Tiantian Liu, Zhong Chen, Wanqiu Chen, Ryan Evans, Jane Xu, Mark E Reeves, Michael E de Vera, Charles Wang","doi":"10.1093/pcmedi/pbad004","DOIUrl":null,"url":null,"abstract":"<p><p>The desmoplastic and complex tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has presented tremendous challenges for developing effective therapeutic strategies. Strategies targeting tumor stroma, albeit with great potential, have met with limited success due to the lack of knowledge on the molecular dynamics within the tumor microenvironment (TME). In pursuit of a better understanding of the influence of miRNAs on TME reprogramming and to explore circulating miRNAs as diagnostic and prognostic biomarkers for PDAC, using RNA-seq, miRNA-seq, and single-cell RNA-seq (scRNA-seq), we investigated the dysregulated signaling pathways in PDAC TME modulated by miRNAs from plasma and tumor tissue. Our bulk RNA-seq in PDAC tumor tissue identified 1445 significantly differentially expressed genes with extracellular matrix and structure organization as the top enriched pathways. Our miRNA-seq identified 322 and 49 abnormally expressed miRNAs in PDAC patient plasma and tumor tissue, respectively. We found many of the TME signaling pathways were targeted by those dysregulated miRNAs in PDAC plasma. Combined with scRNA-seq from patient PDAC tumor, our results revealed that these dysregulated miRNAs were closely associated with extracellular matrix (ECM) remodeling, cell-ECM communication, epithelial-mesenchymal transition, as well as immunosuppression orchestrated by different cellular components of TME. The findings of this study could assist the development of miRNA-based stromal targeting biomarkers or therapy for PDAC patients.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052370/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dysregulated miRNAs modulate tumor microenvironment associated signaling networks in pancreatic ductal adenocarcinoma.\",\"authors\":\"Tiantian Liu, Zhong Chen, Wanqiu Chen, Ryan Evans, Jane Xu, Mark E Reeves, Michael E de Vera, Charles Wang\",\"doi\":\"10.1093/pcmedi/pbad004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The desmoplastic and complex tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has presented tremendous challenges for developing effective therapeutic strategies. Strategies targeting tumor stroma, albeit with great potential, have met with limited success due to the lack of knowledge on the molecular dynamics within the tumor microenvironment (TME). In pursuit of a better understanding of the influence of miRNAs on TME reprogramming and to explore circulating miRNAs as diagnostic and prognostic biomarkers for PDAC, using RNA-seq, miRNA-seq, and single-cell RNA-seq (scRNA-seq), we investigated the dysregulated signaling pathways in PDAC TME modulated by miRNAs from plasma and tumor tissue. Our bulk RNA-seq in PDAC tumor tissue identified 1445 significantly differentially expressed genes with extracellular matrix and structure organization as the top enriched pathways. Our miRNA-seq identified 322 and 49 abnormally expressed miRNAs in PDAC patient plasma and tumor tissue, respectively. We found many of the TME signaling pathways were targeted by those dysregulated miRNAs in PDAC plasma. Combined with scRNA-seq from patient PDAC tumor, our results revealed that these dysregulated miRNAs were closely associated with extracellular matrix (ECM) remodeling, cell-ECM communication, epithelial-mesenchymal transition, as well as immunosuppression orchestrated by different cellular components of TME. The findings of this study could assist the development of miRNA-based stromal targeting biomarkers or therapy for PDAC patients.</p>\",\"PeriodicalId\":33608,\"journal\":{\"name\":\"Precision Clinical Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Clinical Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/pcmedi/pbad004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbad004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The desmoplastic and complex tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has presented tremendous challenges for developing effective therapeutic strategies. Strategies targeting tumor stroma, albeit with great potential, have met with limited success due to the lack of knowledge on the molecular dynamics within the tumor microenvironment (TME). In pursuit of a better understanding of the influence of miRNAs on TME reprogramming and to explore circulating miRNAs as diagnostic and prognostic biomarkers for PDAC, using RNA-seq, miRNA-seq, and single-cell RNA-seq (scRNA-seq), we investigated the dysregulated signaling pathways in PDAC TME modulated by miRNAs from plasma and tumor tissue. Our bulk RNA-seq in PDAC tumor tissue identified 1445 significantly differentially expressed genes with extracellular matrix and structure organization as the top enriched pathways. Our miRNA-seq identified 322 and 49 abnormally expressed miRNAs in PDAC patient plasma and tumor tissue, respectively. We found many of the TME signaling pathways were targeted by those dysregulated miRNAs in PDAC plasma. Combined with scRNA-seq from patient PDAC tumor, our results revealed that these dysregulated miRNAs were closely associated with extracellular matrix (ECM) remodeling, cell-ECM communication, epithelial-mesenchymal transition, as well as immunosuppression orchestrated by different cellular components of TME. The findings of this study could assist the development of miRNA-based stromal targeting biomarkers or therapy for PDAC patients.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.