Arlett L Ibarra-Villarreal, María Fernanda Villarreal-Delgado, Fannie Isela Parra-Cota, Enrico A Yepez, Carlos Guzmán, Marco Antonio Gutierrez-Coronado, Luis Carlos Valdez, Carolina Saint-Pierre, Sergio de Los Santos-Villalobos
{"title":"在墨西哥亚基河谷不同氮率条件下,本地细菌群对硬质小麦(Triticum turgidum L. subsp.","authors":"Arlett L Ibarra-Villarreal, María Fernanda Villarreal-Delgado, Fannie Isela Parra-Cota, Enrico A Yepez, Carlos Guzmán, Marco Antonio Gutierrez-Coronado, Luis Carlos Valdez, Carolina Saint-Pierre, Sergio de Los Santos-Villalobos","doi":"10.1080/15592324.2023.2219837","DOIUrl":null,"url":null,"abstract":"<p><p>A field experiment was carried out to quantify the effect of a native bacterial inoculant on the growth, yield, and quality of the wheat crop, under different nitrogen (N) fertilizer rates in two agricultural seasons. Wheat was sown under field conditions at the Experimental Technology Transfer Center (CETT-910), as a representative wheat crop area from the Yaqui Valley, Sonora México. The experiment was conducted using different doses of nitrogen (0, 130, and 250 kg N ha<sup>-1</sup>) and a bacterial consortium (BC) (<i>Bacillus subtilis</i> TSO9, <i>B. cabrialesii</i> subsp. <i>tritici</i> TSO2<sup>T</sup>, <i>B. subtilis</i> TSO22, <i>B. paralicheniformis</i> TRQ65, and <i>Priestia megaterium</i> TRQ8). Results showed that the agricultural season affected chlorophyll content, spike size, grains per spike, protein content, and whole meal yellowness. The highest chlorophyll and Normalized Difference Vegetation Index (NDVI) values, as well as lower canopy temperature values, were observed in treatments under the application of 130 and 250 kg N ha<sup>-1</sup> (the conventional Nitrogen dose). Wheat quality parameters such as yellow berry, protein content, Sodium dodecyl sulfate (SDS)-Sedimentation, and whole meal yellowness were affected by the N dose. Moreover, the application of the native bacterial consortium, under 130 kg N ha<sup>-1</sup>, resulted in a higher spike length and grain number per spike, which led to a higher yield (+1.0 ton ha<sup>-1</sup> <i>vs</i>. un-inoculated treatment), without compromising the quality of grains. In conclusion, the use of this bacterial consortium has the potential to significantly enhance wheat growth, yield, and quality while reducing the nitrogen fertilizer application, thereby offering a promising agro-biotechnological alternative for improving wheat production.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730153/pdf/","citationCount":"2","resultStr":"{\"title\":\"Effect of a native bacterial consortium on growth, yield, and grain quality of durum wheat (<i>Triticum turgidum</i> L. subsp. <i>durum</i>) under different nitrogen rates in the Yaqui Valley, Mexico.\",\"authors\":\"Arlett L Ibarra-Villarreal, María Fernanda Villarreal-Delgado, Fannie Isela Parra-Cota, Enrico A Yepez, Carlos Guzmán, Marco Antonio Gutierrez-Coronado, Luis Carlos Valdez, Carolina Saint-Pierre, Sergio de Los Santos-Villalobos\",\"doi\":\"10.1080/15592324.2023.2219837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A field experiment was carried out to quantify the effect of a native bacterial inoculant on the growth, yield, and quality of the wheat crop, under different nitrogen (N) fertilizer rates in two agricultural seasons. Wheat was sown under field conditions at the Experimental Technology Transfer Center (CETT-910), as a representative wheat crop area from the Yaqui Valley, Sonora México. The experiment was conducted using different doses of nitrogen (0, 130, and 250 kg N ha<sup>-1</sup>) and a bacterial consortium (BC) (<i>Bacillus subtilis</i> TSO9, <i>B. cabrialesii</i> subsp. <i>tritici</i> TSO2<sup>T</sup>, <i>B. subtilis</i> TSO22, <i>B. paralicheniformis</i> TRQ65, and <i>Priestia megaterium</i> TRQ8). Results showed that the agricultural season affected chlorophyll content, spike size, grains per spike, protein content, and whole meal yellowness. The highest chlorophyll and Normalized Difference Vegetation Index (NDVI) values, as well as lower canopy temperature values, were observed in treatments under the application of 130 and 250 kg N ha<sup>-1</sup> (the conventional Nitrogen dose). Wheat quality parameters such as yellow berry, protein content, Sodium dodecyl sulfate (SDS)-Sedimentation, and whole meal yellowness were affected by the N dose. Moreover, the application of the native bacterial consortium, under 130 kg N ha<sup>-1</sup>, resulted in a higher spike length and grain number per spike, which led to a higher yield (+1.0 ton ha<sup>-1</sup> <i>vs</i>. un-inoculated treatment), without compromising the quality of grains. In conclusion, the use of this bacterial consortium has the potential to significantly enhance wheat growth, yield, and quality while reducing the nitrogen fertilizer application, thereby offering a promising agro-biotechnological alternative for improving wheat production.</p>\",\"PeriodicalId\":20232,\"journal\":{\"name\":\"Plant Signaling & Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730153/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Signaling & Behavior\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2023.2219837\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2023.2219837","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of a native bacterial consortium on growth, yield, and grain quality of durum wheat (Triticum turgidum L. subsp. durum) under different nitrogen rates in the Yaqui Valley, Mexico.
A field experiment was carried out to quantify the effect of a native bacterial inoculant on the growth, yield, and quality of the wheat crop, under different nitrogen (N) fertilizer rates in two agricultural seasons. Wheat was sown under field conditions at the Experimental Technology Transfer Center (CETT-910), as a representative wheat crop area from the Yaqui Valley, Sonora México. The experiment was conducted using different doses of nitrogen (0, 130, and 250 kg N ha-1) and a bacterial consortium (BC) (Bacillus subtilis TSO9, B. cabrialesii subsp. tritici TSO2T, B. subtilis TSO22, B. paralicheniformis TRQ65, and Priestia megaterium TRQ8). Results showed that the agricultural season affected chlorophyll content, spike size, grains per spike, protein content, and whole meal yellowness. The highest chlorophyll and Normalized Difference Vegetation Index (NDVI) values, as well as lower canopy temperature values, were observed in treatments under the application of 130 and 250 kg N ha-1 (the conventional Nitrogen dose). Wheat quality parameters such as yellow berry, protein content, Sodium dodecyl sulfate (SDS)-Sedimentation, and whole meal yellowness were affected by the N dose. Moreover, the application of the native bacterial consortium, under 130 kg N ha-1, resulted in a higher spike length and grain number per spike, which led to a higher yield (+1.0 ton ha-1vs. un-inoculated treatment), without compromising the quality of grains. In conclusion, the use of this bacterial consortium has the potential to significantly enhance wheat growth, yield, and quality while reducing the nitrogen fertilizer application, thereby offering a promising agro-biotechnological alternative for improving wheat production.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.