{"title":"通过改变OXPHOS亚基和前裂变因子Drp1的基因表达逆转果蝇ALS敲入模型中的室特异性线粒体功能障碍","authors":"Y. Nemtsova , B.L. Steinert , K.A. Wharton","doi":"10.1016/j.mcn.2023.103834","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Amyotrophic Lateral Sclerosis<span> (ALS) is a fatal multisystem neurodegenerative disease, characterized by a loss in motor function. ALS is genetically diverse, with mutations in genes ranging from those regulating </span></span>RNA metabolism, like </span><em>TAR DNA-binding protein (TDP-43)</em> and <em>Fused in sarcoma (FUS),</em><span> to those that act to maintain cellular redox homeostasis, like </span><span><em>superoxide dismutase 1</em><em> (SOD1)</em></span><span><span>. Although varied in genetic<span> origin, pathogenic and clinical commonalities are clearly evident between cases of ALS. Defects in mitochondria is one such common pathology, thought to occur prior to, rather than as a consequence of symptom onset, making these organelles a promising therapeutic target for ALS, as well as other neurodegenerative diseases. Depending on the homeostatic needs of neurons throughout life, mitochondria are normally shuttled to different subcellular compartments to regulate metabolite and energy production, lipid metabolism, and buffer calcium. While originally considered a motor neuron disease due to the dramatic loss in motor function accompanied by motor neuron cell death in ALS patients, many studies have now implicated non-motor neurons and </span></span>glial cells alike. Defects in non-motor neuron cell types often preceed motor neuron death suggesting their dysfunction may initiate and/or facilitate the decline in motor neuron health. Here, we investigate mitochondria in a </span><em>Drosophila Sod1</em> knock-in model of ALS. In depth, <em>in vivo</em><span>, examination reveals mitochondrial dysfunction evident prior to onset of motor neuron degeneration. Genetically encoded redox biosensors identify a general disruption in the electron transport chain<span><span><span><span> (ETC). Compartment specific abnormalities in mitochondrial morphology is observed in diseased sensory neurons, accompanied by no apparent defects in the </span>axonal transport<span> machinery, but instead an increase in mitophagy in synaptic regions. The decrease in networked mitochondria at the synapse is reversed upon downregulation of the pro-fission factor </span></span>Drp1. Furthermore, altered expression of specific </span>OXPHOS subunits reverses ALS-associated defects in mitochondrial morphology and function.</span></span></p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"125 ","pages":"Article 103834"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247448/pdf/nihms-1894362.pdf","citationCount":"1","resultStr":"{\"title\":\"Compartment specific mitochondrial dysfunction in Drosophila knock-in model of ALS reversed by altered gene expression of OXPHOS subunits and pro-fission factor Drp1\",\"authors\":\"Y. Nemtsova , B.L. Steinert , K.A. Wharton\",\"doi\":\"10.1016/j.mcn.2023.103834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Amyotrophic Lateral Sclerosis<span> (ALS) is a fatal multisystem neurodegenerative disease, characterized by a loss in motor function. ALS is genetically diverse, with mutations in genes ranging from those regulating </span></span>RNA metabolism, like </span><em>TAR DNA-binding protein (TDP-43)</em> and <em>Fused in sarcoma (FUS),</em><span> to those that act to maintain cellular redox homeostasis, like </span><span><em>superoxide dismutase 1</em><em> (SOD1)</em></span><span><span>. Although varied in genetic<span> origin, pathogenic and clinical commonalities are clearly evident between cases of ALS. Defects in mitochondria is one such common pathology, thought to occur prior to, rather than as a consequence of symptom onset, making these organelles a promising therapeutic target for ALS, as well as other neurodegenerative diseases. Depending on the homeostatic needs of neurons throughout life, mitochondria are normally shuttled to different subcellular compartments to regulate metabolite and energy production, lipid metabolism, and buffer calcium. While originally considered a motor neuron disease due to the dramatic loss in motor function accompanied by motor neuron cell death in ALS patients, many studies have now implicated non-motor neurons and </span></span>glial cells alike. Defects in non-motor neuron cell types often preceed motor neuron death suggesting their dysfunction may initiate and/or facilitate the decline in motor neuron health. Here, we investigate mitochondria in a </span><em>Drosophila Sod1</em> knock-in model of ALS. In depth, <em>in vivo</em><span>, examination reveals mitochondrial dysfunction evident prior to onset of motor neuron degeneration. Genetically encoded redox biosensors identify a general disruption in the electron transport chain<span><span><span><span> (ETC). Compartment specific abnormalities in mitochondrial morphology is observed in diseased sensory neurons, accompanied by no apparent defects in the </span>axonal transport<span> machinery, but instead an increase in mitophagy in synaptic regions. The decrease in networked mitochondria at the synapse is reversed upon downregulation of the pro-fission factor </span></span>Drp1. Furthermore, altered expression of specific </span>OXPHOS subunits reverses ALS-associated defects in mitochondrial morphology and function.</span></span></p></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"125 \",\"pages\":\"Article 103834\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247448/pdf/nihms-1894362.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743123000283\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743123000283","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Compartment specific mitochondrial dysfunction in Drosophila knock-in model of ALS reversed by altered gene expression of OXPHOS subunits and pro-fission factor Drp1
Amyotrophic Lateral Sclerosis (ALS) is a fatal multisystem neurodegenerative disease, characterized by a loss in motor function. ALS is genetically diverse, with mutations in genes ranging from those regulating RNA metabolism, like TAR DNA-binding protein (TDP-43) and Fused in sarcoma (FUS), to those that act to maintain cellular redox homeostasis, like superoxide dismutase 1 (SOD1). Although varied in genetic origin, pathogenic and clinical commonalities are clearly evident between cases of ALS. Defects in mitochondria is one such common pathology, thought to occur prior to, rather than as a consequence of symptom onset, making these organelles a promising therapeutic target for ALS, as well as other neurodegenerative diseases. Depending on the homeostatic needs of neurons throughout life, mitochondria are normally shuttled to different subcellular compartments to regulate metabolite and energy production, lipid metabolism, and buffer calcium. While originally considered a motor neuron disease due to the dramatic loss in motor function accompanied by motor neuron cell death in ALS patients, many studies have now implicated non-motor neurons and glial cells alike. Defects in non-motor neuron cell types often preceed motor neuron death suggesting their dysfunction may initiate and/or facilitate the decline in motor neuron health. Here, we investigate mitochondria in a Drosophila Sod1 knock-in model of ALS. In depth, in vivo, examination reveals mitochondrial dysfunction evident prior to onset of motor neuron degeneration. Genetically encoded redox biosensors identify a general disruption in the electron transport chain (ETC). Compartment specific abnormalities in mitochondrial morphology is observed in diseased sensory neurons, accompanied by no apparent defects in the axonal transport machinery, but instead an increase in mitophagy in synaptic regions. The decrease in networked mitochondria at the synapse is reversed upon downregulation of the pro-fission factor Drp1. Furthermore, altered expression of specific OXPHOS subunits reverses ALS-associated defects in mitochondrial morphology and function.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.