Zhiguo Wang, Jianfeng Li, Jun Liu, Lihui Wang, Yanhua Lu, Jun-Ping Liu
{"title":"端粒g -四重体阴离子稳定剂的分子机制。","authors":"Zhiguo Wang, Jianfeng Li, Jun Liu, Lihui Wang, Yanhua Lu, Jun-Ping Liu","doi":"10.52601/bpr.2022.220039","DOIUrl":null,"url":null,"abstract":"<p><p>Telomere DNA assumes a high-order G-quadruplex (G4) structure, stabilization of which prevents telomere lengthening by telomerase in cancer. Through applying combined molecular simulation methods, an investigation on the selective binding mechanism of anionic phthalocyanine 3,4',4'',4'''-tetrasulfonic acid (APC) and human hybrid (3 + 1) G4s was firstly performed at the atomic level. Compared to the groove binding mode of APC and the hybrid type I (hybrid-I) telomere G4, APC preferred to bind to the hybrid type II (hybrid-II) telomere G4 via end-stacking interactions, which showed much more favorable binding free energies. Analyses of the non-covalent interaction and binding free energy decomposition revealed a decisive role of van der Waals interaction in the binding of APC and telomere hybrid G4s. And the binding of APC and hybrid-II G4 that showed the highest binding affinity adopted the end-stacking binding mode to form the most extensive van der Waals interactions. These findings add new knowledge to the design of selective stabilizers targeting telomere G4 in cancer.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":"8 4","pages":"225-238"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185486/pdf/","citationCount":"1","resultStr":"{\"title\":\"Molecular mechanism of anionic stabilizer for telomere G-quadruplex.\",\"authors\":\"Zhiguo Wang, Jianfeng Li, Jun Liu, Lihui Wang, Yanhua Lu, Jun-Ping Liu\",\"doi\":\"10.52601/bpr.2022.220039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Telomere DNA assumes a high-order G-quadruplex (G4) structure, stabilization of which prevents telomere lengthening by telomerase in cancer. Through applying combined molecular simulation methods, an investigation on the selective binding mechanism of anionic phthalocyanine 3,4',4'',4'''-tetrasulfonic acid (APC) and human hybrid (3 + 1) G4s was firstly performed at the atomic level. Compared to the groove binding mode of APC and the hybrid type I (hybrid-I) telomere G4, APC preferred to bind to the hybrid type II (hybrid-II) telomere G4 via end-stacking interactions, which showed much more favorable binding free energies. Analyses of the non-covalent interaction and binding free energy decomposition revealed a decisive role of van der Waals interaction in the binding of APC and telomere hybrid G4s. And the binding of APC and hybrid-II G4 that showed the highest binding affinity adopted the end-stacking binding mode to form the most extensive van der Waals interactions. These findings add new knowledge to the design of selective stabilizers targeting telomere G4 in cancer.</p>\",\"PeriodicalId\":59621,\"journal\":{\"name\":\"生物物理学报:英文版\",\"volume\":\"8 4\",\"pages\":\"225-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185486/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理学报:英文版\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52601/bpr.2022.220039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2022.220039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular mechanism of anionic stabilizer for telomere G-quadruplex.
Telomere DNA assumes a high-order G-quadruplex (G4) structure, stabilization of which prevents telomere lengthening by telomerase in cancer. Through applying combined molecular simulation methods, an investigation on the selective binding mechanism of anionic phthalocyanine 3,4',4'',4'''-tetrasulfonic acid (APC) and human hybrid (3 + 1) G4s was firstly performed at the atomic level. Compared to the groove binding mode of APC and the hybrid type I (hybrid-I) telomere G4, APC preferred to bind to the hybrid type II (hybrid-II) telomere G4 via end-stacking interactions, which showed much more favorable binding free energies. Analyses of the non-covalent interaction and binding free energy decomposition revealed a decisive role of van der Waals interaction in the binding of APC and telomere hybrid G4s. And the binding of APC and hybrid-II G4 that showed the highest binding affinity adopted the end-stacking binding mode to form the most extensive van der Waals interactions. These findings add new knowledge to the design of selective stabilizers targeting telomere G4 in cancer.