PhenoWell® - 用于土壤栽培植物的新型筛选系统。

Q3 Agricultural and Biological Sciences Plant-environment interactions (Hoboken, N.J.) Pub Date : 2023-02-09 eCollection Date: 2023-04-01 DOI:10.1002/pei3.10098
Ji Li, Michael A C Mintgen, Sam D'Haeyer, Anne Helfer, Hilde Nelissen, Dirk Inzé, Stijn Dhondt
{"title":"PhenoWell® - 用于土壤栽培植物的新型筛选系统。","authors":"Ji Li, Michael A C Mintgen, Sam D'Haeyer, Anne Helfer, Hilde Nelissen, Dirk Inzé, Stijn Dhondt","doi":"10.1002/pei3.10098","DOIUrl":null,"url":null,"abstract":"<p><p>As agricultural production is reaching its limits regarding outputs and land use, the need to further improve crop yield is greater than ever. The limited translatability from in vitro lab results into more natural growth conditions in soil remains problematic. Although considerable progress has been made in developing soil-growth assays to tackle this bottleneck, the majority of these assays use pots or whole trays, making them not only space- and resource-intensive, but also hampering the individual treatment of plants. Therefore, we developed a flexible and compact screening system named PhenoWell® in which individual seedlings are grown in wells filled with soil allowing single-plant treatments. The system makes use of an automated image-analysis pipeline that extracts multiple growth parameters from individual seedlings over time, including projected rosette area, relative growth rate, compactness, and stockiness. Macronutrient, hormone, salt, osmotic, and drought stress treatments were tested in the PhenoWell® system. The system is also optimized for maize with results that are consistent with Arabidopsis while different in amplitude. We conclude that the PhenoWell® system enables a high-throughput, precise, and uniform application of a small amount of solution to individually soil-grown plants, which increases the replicability and reduces variability and compound usage.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243540/pdf/","citationCount":"0","resultStr":"{\"title\":\"PhenoWell®-A novel screening system for soil-grown plants.\",\"authors\":\"Ji Li, Michael A C Mintgen, Sam D'Haeyer, Anne Helfer, Hilde Nelissen, Dirk Inzé, Stijn Dhondt\",\"doi\":\"10.1002/pei3.10098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As agricultural production is reaching its limits regarding outputs and land use, the need to further improve crop yield is greater than ever. The limited translatability from in vitro lab results into more natural growth conditions in soil remains problematic. Although considerable progress has been made in developing soil-growth assays to tackle this bottleneck, the majority of these assays use pots or whole trays, making them not only space- and resource-intensive, but also hampering the individual treatment of plants. Therefore, we developed a flexible and compact screening system named PhenoWell® in which individual seedlings are grown in wells filled with soil allowing single-plant treatments. The system makes use of an automated image-analysis pipeline that extracts multiple growth parameters from individual seedlings over time, including projected rosette area, relative growth rate, compactness, and stockiness. Macronutrient, hormone, salt, osmotic, and drought stress treatments were tested in the PhenoWell® system. The system is also optimized for maize with results that are consistent with Arabidopsis while different in amplitude. We conclude that the PhenoWell® system enables a high-throughput, precise, and uniform application of a small amount of solution to individually soil-grown plants, which increases the replicability and reduces variability and compound usage.</p>\",\"PeriodicalId\":74457,\"journal\":{\"name\":\"Plant-environment interactions (Hoboken, N.J.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243540/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant-environment interactions (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pei3.10098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.10098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

由于农业生产在产量和土地使用方面已达到极限,因此比以往任何时候都更需要进一步提高作物产量。将体外实验室结果转化为土壤中更自然的生长条件仍然存在问题。虽然在开发土壤生长测定方法以解决这一瓶颈问题方面取得了长足进展,但这些测定方法大多使用盆或整个托盘,不仅占用空间和资源,而且妨碍对植物进行个性化处理。因此,我们开发了一种名为 PhenoWell® 的灵活而紧凑的筛选系统,在该系统中,单株幼苗生长在装满土壤的井中,可以进行单株处理。该系统利用自动图像分析管道,提取单株幼苗随时间变化的多个生长参数,包括预计莲座丛面积、相对生长率、紧凑度和存活率。PhenoWell® 系统对宏量营养素、激素、盐、渗透压和干旱胁迫处理进行了测试。该系统还针对玉米进行了优化,结果与拟南芥一致,但在幅度上有所不同。我们的结论是,PhenoWell® 系统能够高通量、精确、均匀地向单个土壤栽培植物施用少量溶液,从而提高了可复制性,减少了变异性和化合物用量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PhenoWell®-A novel screening system for soil-grown plants.

As agricultural production is reaching its limits regarding outputs and land use, the need to further improve crop yield is greater than ever. The limited translatability from in vitro lab results into more natural growth conditions in soil remains problematic. Although considerable progress has been made in developing soil-growth assays to tackle this bottleneck, the majority of these assays use pots or whole trays, making them not only space- and resource-intensive, but also hampering the individual treatment of plants. Therefore, we developed a flexible and compact screening system named PhenoWell® in which individual seedlings are grown in wells filled with soil allowing single-plant treatments. The system makes use of an automated image-analysis pipeline that extracts multiple growth parameters from individual seedlings over time, including projected rosette area, relative growth rate, compactness, and stockiness. Macronutrient, hormone, salt, osmotic, and drought stress treatments were tested in the PhenoWell® system. The system is also optimized for maize with results that are consistent with Arabidopsis while different in amplitude. We conclude that the PhenoWell® system enables a high-throughput, precise, and uniform application of a small amount of solution to individually soil-grown plants, which increases the replicability and reduces variability and compound usage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Untying the knot: Unraveling genetic mechanisms behind black knot disease resistance in Prunus salicina (Japanese plum). Inhibitory effects of N-trans-cinnamoyltyramine on growth of invasive weeds and weedy rice. An intelligent system for determining the degree of tree bark beetle damage based on the use of generative-adversarial neural networks. Picophytoplankton prevail year-round in the Elbe estuary. How dry is dead? Evaluating the impact of desiccation on the viability of the invasive species Cissus quadrangularis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1