Charlotte Nelson, Angelina M Dichiera, Ellen H Jung, Colin J Brauner
{"title":"模型硬骨鱼,虹鳟鱼血浆可及的碳酸酐酶可用性图谱。","authors":"Charlotte Nelson, Angelina M Dichiera, Ellen H Jung, Colin J Brauner","doi":"10.1007/s00360-023-01484-7","DOIUrl":null,"url":null,"abstract":"<p><p>The unique teleost oxygenation system that permits enhanced oxygen unloading during stress comprises three main characteristics: pH-sensitive haemoglobin, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma-accessible carbonic anhydrase (paCA). A heterogeneous distribution of paCA is essential; its presence permits enhanced oxygen unloading during stress, while its absence at the gills maintains conditions for oxygen uptake by pH-sensitive haemoglobins. We hypothesised that paCA would be absent in all four gill arches, as has been previously indicated for arch two, and that paCA would be present in all other tissues. Through a suite of biochemical and molecular methods, we confirmed the absence of paCA from all four arches. We also found evidence for paCA in nine other tissues and a lack of paCA availability in the stomach. Expression was highly variable between tissues and suggests these differences may be associated with their respective metabolic activities. Additionally, we analysed the specific CA-IV isoform expressed within each tissue and showed almost complete separation of expression between tissues; CA-IVa was detected in the heart, brain, anterior intestine, and liver, whereas CA-IVb was detected in all intestine sections, pyloric caeca, kidney, and white muscle. This adds to a growing collection of work suggesting CA-IVa and b play divergent roles in gas exchange and ion/acid-base balance, respectively. The current study represents the first comprehensive atlas of paCA availability within the circulatory system of the model teleost, rainbow trout, and fills important gaps in our knowledge of this unique oxygenation system.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":"193 3","pages":"293-305"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout.\",\"authors\":\"Charlotte Nelson, Angelina M Dichiera, Ellen H Jung, Colin J Brauner\",\"doi\":\"10.1007/s00360-023-01484-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unique teleost oxygenation system that permits enhanced oxygen unloading during stress comprises three main characteristics: pH-sensitive haemoglobin, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma-accessible carbonic anhydrase (paCA). A heterogeneous distribution of paCA is essential; its presence permits enhanced oxygen unloading during stress, while its absence at the gills maintains conditions for oxygen uptake by pH-sensitive haemoglobins. We hypothesised that paCA would be absent in all four gill arches, as has been previously indicated for arch two, and that paCA would be present in all other tissues. Through a suite of biochemical and molecular methods, we confirmed the absence of paCA from all four arches. We also found evidence for paCA in nine other tissues and a lack of paCA availability in the stomach. Expression was highly variable between tissues and suggests these differences may be associated with their respective metabolic activities. Additionally, we analysed the specific CA-IV isoform expressed within each tissue and showed almost complete separation of expression between tissues; CA-IVa was detected in the heart, brain, anterior intestine, and liver, whereas CA-IVb was detected in all intestine sections, pyloric caeca, kidney, and white muscle. This adds to a growing collection of work suggesting CA-IVa and b play divergent roles in gas exchange and ion/acid-base balance, respectively. The current study represents the first comprehensive atlas of paCA availability within the circulatory system of the model teleost, rainbow trout, and fills important gaps in our knowledge of this unique oxygenation system.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\"193 3\",\"pages\":\"293-305\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-023-01484-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-023-01484-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout.
The unique teleost oxygenation system that permits enhanced oxygen unloading during stress comprises three main characteristics: pH-sensitive haemoglobin, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma-accessible carbonic anhydrase (paCA). A heterogeneous distribution of paCA is essential; its presence permits enhanced oxygen unloading during stress, while its absence at the gills maintains conditions for oxygen uptake by pH-sensitive haemoglobins. We hypothesised that paCA would be absent in all four gill arches, as has been previously indicated for arch two, and that paCA would be present in all other tissues. Through a suite of biochemical and molecular methods, we confirmed the absence of paCA from all four arches. We also found evidence for paCA in nine other tissues and a lack of paCA availability in the stomach. Expression was highly variable between tissues and suggests these differences may be associated with their respective metabolic activities. Additionally, we analysed the specific CA-IV isoform expressed within each tissue and showed almost complete separation of expression between tissues; CA-IVa was detected in the heart, brain, anterior intestine, and liver, whereas CA-IVb was detected in all intestine sections, pyloric caeca, kidney, and white muscle. This adds to a growing collection of work suggesting CA-IVa and b play divergent roles in gas exchange and ion/acid-base balance, respectively. The current study represents the first comprehensive atlas of paCA availability within the circulatory system of the model teleost, rainbow trout, and fills important gaps in our knowledge of this unique oxygenation system.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.