单词在大脑和机器中的含义。

IF 5.1 1区 心理学 Q1 PSYCHOLOGY Psychological review Pub Date : 2023-03-01 DOI:10.1037/rev0000297
Brenden M Lake, Gregory L Murphy
{"title":"单词在大脑和机器中的含义。","authors":"Brenden M Lake,&nbsp;Gregory L Murphy","doi":"10.1037/rev0000297","DOIUrl":null,"url":null,"abstract":"<p><p>Machines have achieved a broad and growing set of linguistic competencies, thanks to recent progress in Natural Language Processing (NLP). Psychologists have shown increasing interest in such models, comparing their output to psychological judgments such as similarity, association, priming, and comprehension, raising the question of whether the models could serve as psychological theories. In this article, we compare how humans and machines represent the meaning of words. We argue that contemporary NLP systems are fairly successful models of human word similarity, but they fall short in many other respects. Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to the desires, goals, and beliefs that people express through words. Word meanings must also be grounded in perception and action and be capable of flexible combinations in ways that current systems are not. We discuss promising approaches to grounding NLP systems and argue that they will be more successful, with a more human-like, conceptual basis for word meaning. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":"130 2","pages":"401-431"},"PeriodicalIF":5.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Word meaning in minds and machines.\",\"authors\":\"Brenden M Lake,&nbsp;Gregory L Murphy\",\"doi\":\"10.1037/rev0000297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machines have achieved a broad and growing set of linguistic competencies, thanks to recent progress in Natural Language Processing (NLP). Psychologists have shown increasing interest in such models, comparing their output to psychological judgments such as similarity, association, priming, and comprehension, raising the question of whether the models could serve as psychological theories. In this article, we compare how humans and machines represent the meaning of words. We argue that contemporary NLP systems are fairly successful models of human word similarity, but they fall short in many other respects. Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to the desires, goals, and beliefs that people express through words. Word meanings must also be grounded in perception and action and be capable of flexible combinations in ways that current systems are not. We discuss promising approaches to grounding NLP systems and argue that they will be more successful, with a more human-like, conceptual basis for word meaning. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\"130 2\",\"pages\":\"401-431\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000297\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000297","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 71

摘要

由于自然语言处理(NLP)的最新进展,机器已经实现了广泛且不断增长的语言能力。心理学家对这些模型表现出越来越大的兴趣,将它们的输出与心理学判断(如相似性、联想、启动和理解)进行比较,提出了这些模型是否可以作为心理学理论的问题。在本文中,我们将比较人类和机器如何表示单词的含义。我们认为,当代NLP系统是相当成功的人类单词相似度模型,但它们在许多其他方面都存在不足。目前的模型与大型语料库中基于文本的模式的联系过于紧密,而与人们通过语言表达的愿望、目标和信念的联系过于微弱。词义还必须以感知和行动为基础,并且能够灵活地组合,这是当前系统所不具备的。我们讨论了有希望的NLP系统的基础方法,并认为它们将更成功,具有更像人类的概念基础的单词含义。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Word meaning in minds and machines.

Machines have achieved a broad and growing set of linguistic competencies, thanks to recent progress in Natural Language Processing (NLP). Psychologists have shown increasing interest in such models, comparing their output to psychological judgments such as similarity, association, priming, and comprehension, raising the question of whether the models could serve as psychological theories. In this article, we compare how humans and machines represent the meaning of words. We argue that contemporary NLP systems are fairly successful models of human word similarity, but they fall short in many other respects. Current models are too strongly linked to the text-based patterns in large corpora, and too weakly linked to the desires, goals, and beliefs that people express through words. Word meanings must also be grounded in perception and action and be capable of flexible combinations in ways that current systems are not. We discuss promising approaches to grounding NLP systems and argue that they will be more successful, with a more human-like, conceptual basis for word meaning. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological review
Psychological review 医学-心理学
CiteScore
9.70
自引率
5.60%
发文量
97
期刊介绍: Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.
期刊最新文献
How does depressive cognition develop? A state-dependent network model of predictive processing. Bouncing back from life's perturbations: Formalizing psychological resilience from a complex systems perspective. The meaning of attention control. Counterfactuals and the logic of causal selection. The relation between learning and stimulus-response binding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1