{"title":"用于无细胞蛋白质合成、生物传感和修复的eCell技术。","authors":"Damian Van Raad, Thomas Huber","doi":"10.1007/10_2023_225","DOIUrl":null,"url":null,"abstract":"<p><p>The eCell technology is a recently introduced, specialized protein production platform with uses in a multitude of biotechnological applications. This chapter summarizes the use of eCell technology in four selected application areas. Firstly, for detecting heavy metal ions, specifically mercury, in an in vitro protein expression system. Results show improved sensitivity and lower limit of detection compared to comparable in vivo systems. Secondly, eCells are semipermeable, stable, and can be stored for extended periods of time, making them a portable and accessible technology for bioremediation of toxicants in extreme environments. Thirdly and fourthly, applications of eCell technology are shown to facilitate expression of correctly folded disulfide-rich proteins and incorporate chemically interesting derivatives of amino acids into proteins which are toxic to in vivo protein expression. Overall, eCell technology presents a cost-effective and efficient method for biosensing, bioremediation, and protein production.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"129-146"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"eCell Technology for Cell-Free Protein Synthesis, Biosensing, and Remediation.\",\"authors\":\"Damian Van Raad, Thomas Huber\",\"doi\":\"10.1007/10_2023_225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The eCell technology is a recently introduced, specialized protein production platform with uses in a multitude of biotechnological applications. This chapter summarizes the use of eCell technology in four selected application areas. Firstly, for detecting heavy metal ions, specifically mercury, in an in vitro protein expression system. Results show improved sensitivity and lower limit of detection compared to comparable in vivo systems. Secondly, eCells are semipermeable, stable, and can be stored for extended periods of time, making them a portable and accessible technology for bioremediation of toxicants in extreme environments. Thirdly and fourthly, applications of eCell technology are shown to facilitate expression of correctly folded disulfide-rich proteins and incorporate chemically interesting derivatives of amino acids into proteins which are toxic to in vivo protein expression. Overall, eCell technology presents a cost-effective and efficient method for biosensing, bioremediation, and protein production.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\" \",\"pages\":\"129-146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2023_225\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2023_225","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
eCell Technology for Cell-Free Protein Synthesis, Biosensing, and Remediation.
The eCell technology is a recently introduced, specialized protein production platform with uses in a multitude of biotechnological applications. This chapter summarizes the use of eCell technology in four selected application areas. Firstly, for detecting heavy metal ions, specifically mercury, in an in vitro protein expression system. Results show improved sensitivity and lower limit of detection compared to comparable in vivo systems. Secondly, eCells are semipermeable, stable, and can be stored for extended periods of time, making them a portable and accessible technology for bioremediation of toxicants in extreme environments. Thirdly and fourthly, applications of eCell technology are shown to facilitate expression of correctly folded disulfide-rich proteins and incorporate chemically interesting derivatives of amino acids into proteins which are toxic to in vivo protein expression. Overall, eCell technology presents a cost-effective and efficient method for biosensing, bioremediation, and protein production.
期刊介绍:
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.