D-allose:癌症的分子途径和治疗能力。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Current molecular pharmacology Pub Date : 2023-01-01 DOI:10.2174/1874467216666221227105011
Sahar Khajeh, Maryam Ganjavi, Ghodratollah Panahi, Mina Zare, Mohammadreza Zare, Seyed Mohammad Tahami, Vahid Razban
{"title":"D-allose:癌症的分子途径和治疗能力。","authors":"Sahar Khajeh,&nbsp;Maryam Ganjavi,&nbsp;Ghodratollah Panahi,&nbsp;Mina Zare,&nbsp;Mohammadreza Zare,&nbsp;Seyed Mohammad Tahami,&nbsp;Vahid Razban","doi":"10.2174/1874467216666221227105011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the implementation of various cancer therapies, adequate therapeutic efficacy has not been achieved. A growing number of studies have been dedicated to the discovery of new molecules to combat refractory cancer cells efficiently. Recently, the use of a rare type of sugar, D-allose, has attracted the attention of research communities. In combination with the first-line treatment of cancers, including different types of radiotherapies and chemotherapies, D-allose has been detected with favorable complementary effects. Understanding the mechanism of therapeutic target molecules will enable us to develop new strategies for cancer patients that do not currently respond to the present therapies.</p><p><strong>Objective: </strong>We aimed to provide a review of the effects of D-allose in cancer treatment, its mechanisms of action, and gaps in this field that require more investigations.</p><p><strong>Discussion: </strong>With rare exceptions, in many cancer types, including head and neck, lung, liver, bladder, blood, and breast, D-allose consistently has exhibited anticancer activity in vitro and/or in vivo. Most of the D-allose functions are mediated through thioredoxin-interacting protein molecules. D-allose exerts its effects via reactive oxygen species regulation, cell cycle arrest, metabolic reprogramming, autophagy, apoptosis induction, and sensitizing tumors to radiotherapy and chemotherapy.</p><p><strong>Conclusion: </strong>D-allose has shown great promise for combating tumor cells with no side effects, especially in combination with first-line drugs; however, its potential for cancer therapy has not been comprehensively investigated <i>in vitro</i> or </>in vivo</i>.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"D-allose: Molecular Pathways and Therapeutic Capacity in Cancer.\",\"authors\":\"Sahar Khajeh,&nbsp;Maryam Ganjavi,&nbsp;Ghodratollah Panahi,&nbsp;Mina Zare,&nbsp;Mohammadreza Zare,&nbsp;Seyed Mohammad Tahami,&nbsp;Vahid Razban\",\"doi\":\"10.2174/1874467216666221227105011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite the implementation of various cancer therapies, adequate therapeutic efficacy has not been achieved. A growing number of studies have been dedicated to the discovery of new molecules to combat refractory cancer cells efficiently. Recently, the use of a rare type of sugar, D-allose, has attracted the attention of research communities. In combination with the first-line treatment of cancers, including different types of radiotherapies and chemotherapies, D-allose has been detected with favorable complementary effects. Understanding the mechanism of therapeutic target molecules will enable us to develop new strategies for cancer patients that do not currently respond to the present therapies.</p><p><strong>Objective: </strong>We aimed to provide a review of the effects of D-allose in cancer treatment, its mechanisms of action, and gaps in this field that require more investigations.</p><p><strong>Discussion: </strong>With rare exceptions, in many cancer types, including head and neck, lung, liver, bladder, blood, and breast, D-allose consistently has exhibited anticancer activity in vitro and/or in vivo. Most of the D-allose functions are mediated through thioredoxin-interacting protein molecules. D-allose exerts its effects via reactive oxygen species regulation, cell cycle arrest, metabolic reprogramming, autophagy, apoptosis induction, and sensitizing tumors to radiotherapy and chemotherapy.</p><p><strong>Conclusion: </strong>D-allose has shown great promise for combating tumor cells with no side effects, especially in combination with first-line drugs; however, its potential for cancer therapy has not been comprehensively investigated <i>in vitro</i> or </>in vivo</i>.</p>\",\"PeriodicalId\":10865,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1874467216666221227105011\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467216666221227105011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

背景:尽管实施了各种癌症治疗方法,但尚未达到足够的治疗效果。越来越多的研究致力于发现新的分子来有效地对抗难治性癌细胞。最近,一种罕见类型的糖d -醛糖的使用引起了研究界的注意。在癌症的一线治疗中,包括不同类型的放疗和化疗,已经发现D-allose具有良好的互补作用。了解治疗靶分子的机制将使我们能够为目前对现有疗法没有反应的癌症患者开发新的策略。目的:我们旨在综述D-allose在癌症治疗中的作用,其作用机制以及该领域需要进一步研究的空白。讨论:除了极少数例外,在许多类型的癌症中,包括头颈癌、肺癌、肝癌、膀胱癌、血癌和乳腺癌,D-allose在体外和/或体内一直表现出抗癌活性。大多数D-allose功能是通过硫氧还蛋白相互作用蛋白分子介导的。D-allose通过活性氧调控、细胞周期阻滞、代谢重编程、自噬、诱导细胞凋亡以及使肿瘤对放疗和化疗敏感等途径发挥作用。结论:D-allose具有抗肿瘤的良好前景,且无副作用,特别是与一线药物联合使用;然而,其治疗癌症的潜力尚未在体外或体内得到全面研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-allose: Molecular Pathways and Therapeutic Capacity in Cancer.

Background: Despite the implementation of various cancer therapies, adequate therapeutic efficacy has not been achieved. A growing number of studies have been dedicated to the discovery of new molecules to combat refractory cancer cells efficiently. Recently, the use of a rare type of sugar, D-allose, has attracted the attention of research communities. In combination with the first-line treatment of cancers, including different types of radiotherapies and chemotherapies, D-allose has been detected with favorable complementary effects. Understanding the mechanism of therapeutic target molecules will enable us to develop new strategies for cancer patients that do not currently respond to the present therapies.

Objective: We aimed to provide a review of the effects of D-allose in cancer treatment, its mechanisms of action, and gaps in this field that require more investigations.

Discussion: With rare exceptions, in many cancer types, including head and neck, lung, liver, bladder, blood, and breast, D-allose consistently has exhibited anticancer activity in vitro and/or in vivo. Most of the D-allose functions are mediated through thioredoxin-interacting protein molecules. D-allose exerts its effects via reactive oxygen species regulation, cell cycle arrest, metabolic reprogramming, autophagy, apoptosis induction, and sensitizing tumors to radiotherapy and chemotherapy.

Conclusion: D-allose has shown great promise for combating tumor cells with no side effects, especially in combination with first-line drugs; however, its potential for cancer therapy has not been comprehensively investigated in vitro or in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular pharmacology
Current molecular pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
4.90
自引率
3.70%
发文量
112
期刊介绍: Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology. Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.
期刊最新文献
Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression. Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. PIASA, A Novel Peptide, Prevents SH-SY5Y Neuroblastoma Cells against Rotenone-induced Toxicity. Toxicity, Genotoxicity, and Carcinogenicity of Isotretinoin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1