MedLexSp -用于西班牙医学自然语言处理的医学词典。

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2023-02-02 DOI:10.1186/s13326-022-00281-5
Leonardo Campillos-Llanos
{"title":"MedLexSp -用于西班牙医学自然语言处理的医学词典。","authors":"Leonardo Campillos-Llanos","doi":"10.1186/s13326-022-00281-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.</p><p><strong>Construction and content: </strong>This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.</p><p><strong>Conclusions: </strong>The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"2"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892682/pdf/","citationCount":"1","resultStr":"{\"title\":\"MedLexSp - a medical lexicon for Spanish medical natural language processing.\",\"authors\":\"Leonardo Campillos-Llanos\",\"doi\":\"10.1186/s13326-022-00281-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.</p><p><strong>Construction and content: </strong>This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.</p><p><strong>Conclusions: </strong>The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"14 1\",\"pages\":\"2\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892682/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-022-00281-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-022-00281-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

背景:医学词汇使健康文本的自然语言处理(NLP)成为可能。词汇表从同义词典和本体论中收集术语和概念,以及词性标注、词序化或自然语言生成的语言数据。到目前为止,还没有这种类型的西班牙语资源。结构与内容:本文描述了一个用于西班牙语医学自然语言处理的统一医学词典。MedLexSp包括带有PoS信息的术语和屈折词形,以及统一医学语言系统(UMLS)的语义类型、组和概念唯一标识符(gui)。为了创建它,我们使用了NLP技术和领域语料库(例如MedlinePlus)。我们还从西班牙皇家医学院医学术语词典、医学主题词(MeSH)、医学系统命名法-临床术语(SNOMED-CT)、调节活动术语医学词典(MedDRA)、国际疾病分类与10、解剖治疗化学分类、国家癌症研究所(NCI)词典、在线孟德尔人类遗传(OMIM)和孤儿数据中收集术语。采用基于相似性的方法和在大型语料库上训练的词嵌入来组装与COVID-19相关的术语。MedLexSp包括100 887个引理,302 543个屈折形式(共轭动词和数/性别变体)和42 958个UMLS gui。我们报告MedLexSp的两个用例。首先,应用该词典对1200篇临床试验相关文本的语料库进行预注释。第二,临床病例文本的词性标注和词性化。与默认的Spacy和Stanza python库相比,MedLexSp提高了PoS标记和词序化的分数。结论:词典分布在一个分隔符分隔的值文件中;带有词法标记框架的XML文件;用于Spacy和Stanza库的词法分析器模块;和补充词法记录(LR)文件。在公共存储库中提供了用于提取COVID-19术语的嵌入和代码,以及丰富了医学术语的空间和Stanza词形器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MedLexSp - a medical lexicon for Spanish medical natural language processing.

Background: Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.

Construction and content: This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.

Conclusions: The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. Concretizing plan specifications as realizables within the OBO foundry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1